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Abstract

When several contests compete for the participation of a common set of play-

ers, a contest’s allocation of prizes not only induces incentive effects but also

participation effects. Our model predicts that an increase in the sensitivity with

which contest outcomes depend on players’ efforts makes flatter prize structures

more attractive to participants. In equilibrium, contests that aim to maximize

the number of participants will award multiple prizes if and only if this sensitivity

is sufficiently high. Moreover, the prize awarded to the winner is decreasing in

the contests’ sensitivity. We provide empirical evidence from professional road

running using race–distance as a measure of sensitivity. We show that steeper

prize structures are more attractive to top ranked runners in longer, i.e. less

sensitive, races. In line with our theory, longer races do in fact offer steeper prize

structures.
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1 Introduction

In 2008 the three major providers of game consoles, Microsoft, Nintendo, and Sony,

each announced a contest to develop video game applications that could be operated on

their platforms. In order to attract individual developers, the companies offered cash

and retail prizes as well as royalties.1 Due to technical and legal constraints, individual

game developers were restricted to present their ideas to only one of the three contests.

There are many other examples where contests compete for participants. Architectural

competitions contend for design proposals. Auctions compete for bidders. Publishing

houses offer promotional contests and sweepstakes in order to increase magazine sub-

scriptions. Big city Marathons compete for runners. More generally, firms aim to

attract workers by offering labor tournaments, as well as wages.2

In this article, we focus on one dimension of this competition; the competition in

prize structures. In particular, we are interested in the dependence of participants’

contest choice on the contests’ allocation of prizes and, in turn, its implications for the

contests’ optimal prize structure. Although the incentive effects of a prize structure

for a given set of players have been well understood in the existing literature, the

participation effects, when the set of players is endogenous have not been considered

so far.

We study and empirically test a complete information model in which two identical

contests compete for the participation of a given set of homogeneous, risk neutral play-

ers. Players make their contest choice simultaneously and contingent on the contests’

allocation of prizes. Once the set of participants has been determined in each contest,

1For example, with the aim to double its game library by the end of the year, Microsoft announced
its“Dream-Build-Play Contest” which awarded a total of $75000 and a potential publishing contract
to the developers of the best games playable on its Xbox 360.

2Whereas in some of these examples, e.g. labor tournaments, players can participate in only
one of the available contests, in others, e.g. sweepstakes, players can participate in many contests
simultaneously. For our analysis it is only important that players cannot take part in all available
contests.
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players exert effort in order to win prizes. A player’s likelihood to win a contest is

increasing in his own effort but decreasing in the efforts of his rivals.

The relationship between the contests’ outcome and players’ efforts is key in our

model. Contests can be characterized by how sensitive the outcome is with respect to

efforts. For example, in an auction, the bidder with the highest bid wins with certainty;

in a R&D contest, results are more uncertain, but developers who exert high efforts

are more likely to win; and in sweepstakes, winning probabilities are approximately

independent of efforts and are the same for every agent.

We show that the players’ contest choice crucially depends on how sensitive a con-

test’s outcome is with respect to individual efforts. Our results show that an increase

in sensitivity will decrease the relative attractiveness of steep prize structures as com-

pared to flat prize structures. When outcomes are sufficiently sensitive, contests that

award multiple prizes will attract more participants than contests that implement the

winner–takes-all principle. The explanation for this result is that the award of multi-

ple prizes mitigates competition amongst players and competition is stronger the more

sensitive outcomes are with respect to players’ efforts. For the same reason, multiple

prizes become more attractive as the number of potential participants increases.

The implications for the contests’ optimal allocation of prizes depend on the or-

ganizers’ objectives. In reality, contests often differ with respect to their objectives.

For example, although R&D contests and auctions typically aim to maximize players’

efforts/bids, promotional contests like the Reader’s Digest sweepstakes and student

competitions like the International Science Olympiads seek to maximize the number of

participants.

When contests aim to maximize participation, the implications of the above results

for the contests’ equilibrium prize structure are straight forward. In particular, multiple

prizes will be awarded if and only if the sensitivity of outcomes with respect to efforts

is sufficiently large. Moreover, the stronger the influence of a player’s effort on his

likelihood of winning, the smaller is the fraction of prize money awarded to the winner.

When turning our attention to the maximization of aggregate effort, we find that

incentive effects outweigh the above participation effects. When contest organizers aim

to maximize aggregate effort, in equilibrium contests will therefore award their entire
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prize budget to the winner.

Overall, our results are fairly general. They hold for an arbitrary number of players,

any number of prizes and easily generalize to models with more than two contests. Our

findings help to explain why in reality some contests implement the winner–takes–all

principle whereas others choose to award multiple prices. For example, the Progressive

Insurance Automotive X PRIZE awards a single prize of $10 million for the development

of a super fuel–efficient vehicle. Similarly Reader’s Digest promotional contests usually

award one “Super Grand Prize”. In contrast, the New York Marathon offers as much

as twenty different prizes. According to our theory, the variations in the allocation

of prizes are caused by differences in the contest organizers’ objectives and in the

sensitivity with which outcomes depend on players’ efforts.

We provide empirical evidence in support of our theory using data from professional

road running. We argue that as the race distance increases, outcomes become more

random and hence less sensitive to runners’ efforts.3 Our empirical results indicate that

the participation of top ranked runners is indeed influenced by the contests’ choice of

prize structure. In line with our theory, in long races steeper prize structures are rela-

tively more attractive to top runners than in short races. For example, when moving

from a completely flat prize structure to a winner–takes–all contest, a representative

Marathon from our sample would gain an additional five top runners. In contrast, for

shorter races we find no significant relationship between prize structures and participa-

tion. Hence if race organizers care about attracting top runners, longer races are more

likely to exhibit steeper prize structures than shorter races. Using various measures

of prize structure and controlling for several important factors, we do indeed find that

as the race distance increases, there is a monotonic increase in the prize structure’s

concentration towards the first prize. For example, the Herfindahl concentration index,

based on the first three prizes, increases by almost 4% when the race moves from 5km

to 42km which is consistent with as much as a 8% increase in the prize awarded to the

winner or a 48% increase in the difference between first and second prize.

We also consider the relationship between prize structures and winning perfor-

3Although in a 5km race the prediction of the winner based on past performance turns out to be
correct in 43% of the cases, this number reduces to 20% for a marathon. For details see Section 5.
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mance. Steeper prize structures lead to higher efforts irrespective of the race–distance.

However, their effects on the participation of top runners depends on race distance, in

the way described above. Hence in long races, steeper prize structures should have a

more positive effect on winning performance than in short races. Although we do find

some suggestive evidence for this relationship, these last results fail to be statistically

significant.

The article is organized as follows. In the remainder of this section we review the

related theoretical literature. A discussion of the empirical literature is referred to

Section 5. Section 2 introduces the theoretical model. Section 3 contains our main

result about the dependence of players’ contest choice on the contests’ prize structures.

In Section 4 we consider the implications for the contests’ optimal prize structure

while empirical evidence is presented in Section 5. Section 6 concludes. All proofs are

contained in the Appendix.

Related literature

The existing literature on contest design has focused on single contests with an exoge-

nously given set of participants. In their seminal article, Moldovanu and Sela (2001)

show that the optimal allocation of prizes depends critically on the shape of players’

cost of effort functions. Multiple prizes become optimal when the costs of effort are

sufficiently convex. Multiple prizes have also been justified by players’ risk aversion (Kr-

ishna and Morgan (1998)) and players’ heterogeneity (Szymanski and Valletti (2005))

but under the restrictive assumption that the number of players is small (N ≤ 4). Most

articles provide arguments for the use of a single (Clark and Riis (1998b), Glazer and

Hassin (1988)) or large (Rosen (2001)) first prize or few prizes (Barut and Kovenock

(1998)).4 Endogenizing participation by allowing for the existence of several contests

provides us with a new argument for the wide spread emergence of multiple prizes.

Although some articles endogenize the set of participants, they maintain the focus

4Other issues considered by this literature include optimal effort dependent rewards (Cohen et al.
(2008)), simultaneous versus sequential designs (Clark and Riis (1998a)), the splitting of a contest into
sub–contests (Moldovanu and Sela (2007)), and optimal seeding in elimination tournaments (Groh et
al. (2008)).
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on a single contest. Taylor (1995) and Fullerton and McAfee (1999), for example, study

how the set of participants, and hence the expected winning performance, in a research

tournament varies with its entry fee.

Competition for participants has attracted some attention in the literature on auc-

tion and mechanism design.5 McAfee (1993), Peters and Severinov (1997) and Burguet

and Sakovics (1999) for example, consider models in which auctions compete for bid-

ders. However, while in our model contests compete via their prize allocation, in these

articles, prizes, i.e. the object(s) on sale, are fixed and auctions compete by using their

reservation price. More related, Moldovanu et al. (2008) consider quantity competition

between two auction sites. Although their model is different in its setup it shares a

common feature with ours. In the same way in which in our model contests increase

participation by awarding multiple prizes (at the cost of undermining incentives), in

their model auctions increase the number of bidders by raising their supply (at the cost

of lowering prices).

Finally, the literature on labor tournaments is also relevant. Lazear and Rosen

(1981), Green and Stokey (1983), Nalebuff and Stiglitz (1983), and Mookherjee (1984)

have shown that the introduction of some form of contest among workers could provide

optimal incentives to exert effort inside a firm. While Green and Stokey (1983) and

Mookherjee (1984) take the set of workers as exogenously given, Lazear and Rosen

(1981) and Nalebuff and Stiglitz (1983) assume a competitive labor market in which

each firm hires a fixed number of workers. While in these articles each worker faces a

fixed number of opponents, our results are driven by the fact that a player’s number

of opponents itself depends on the contest design.

5An auction can be understood as one particular example for a contest. Bidders’ bids are the
analog to players’ efforts and the auction format determines the players’ costs of effort. For example,
an all–pay auction is often called a “perfectly discriminating contest” because the bidder (player) with
the highest bid (effort) wins with certainty.
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2 The model

We consider two contests, i ∈ {1, 2}, and N ≥ 3 players.6 Contests are identical and

face the same prize budget V . Each contest i chooses a prize structure, i.e. a vector of

non–negative real numbers vi = (v1
i , v

2
i , . . . , v

N
i ) such that vm

i is (weakly) decreasing in

m and
∑N

m=1 vm
i = 1.7 The m’th prize awarded by contest i has the value vm

i V . Note

that in order to focus on the participation effects implied by a contest’s prize structure

we rule out the possibility that contests pay participants for attendance. Our results

remain valid when we allow for attendance pay (see discussion at the end of Section 4).

It will become clear that the contests’ competition in prize structures resembles price

competition a la Bertrand. As a consequence our results generalize to an arbitrary

number of contests.

In order to identify competition for participants as the reason for the emergence

of multiple prizes, we assume that players are identical, risk neutral, and have linear

costs of effort. Under these assumptions, a contest with an exogenously given set

of participants would award its entire prize budget to the winner. Each player can

participate in, at most, one of the two contests because of time or other resource

constraints. In each contest, participants exert effort in order to win a prize. A player

who enters contest i, exerts effort en ≥ 0, and wins the m’th prize, receives the payoff

U i
n = vm

i V − Cen.

The parameter C > 0 denotes the players’ constant marginal cost of effort. As-

suming that players have a zero outside option we can normalize, without a loss of

generality, by setting V = C = 1.

The timing is as follows. First, contests simultaneously choose their prize struc-

tures. We denote the subgame, which starts after contests have announced the prize

structures v1 and v2, as the (v1, v2) entry game. Second, players simultaneously de-

cide which contest to enter.8 Third, upon observing the number of opponents, players

6For N = 2 our results remain valid when formulated in a weak rather than a strict way.
7The assumption that prizes are (weakly) decreasing is standard in the literature on contest design.

Increasing prizes lead to sub–optimal levels of effort.
8While our results remain unchanged when contests are allowed to choose their prize structure

sequentially, the assumption that entry takes place simultaneously is important as it rules out coor-
dination. Note however that when entry is sequential, contests have an incentive to conceal the entry
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simultaneously choose their effort levels.9

In order to determine the contests’ outcome we employ Tullock’s (1980) widely used

contest success function (see Skaderpas (1996) for axiomatization and Nti (1997) for

properties). In particular, letting Ni denote contest i’s set of participants and Ni its

cardinality, prizes in contest i are distributed as follows. The probability that player

n ∈ Ni wins the first prize v1
i is given by

p1
n =

(en)s

∑

k∈Ni
(ek)s

. (1)

Conditional on player m winning the first prize, player n wins the second prize v2
i with

probability

p2
n|m =

(en)s

∑

k∈Ni−{m}(ek)s
. (2)

Hence the (unconditional) probability that player n wins the second prize is given by

p2
n =

∑

m∈Ni−{n}
p1

mp2
n|m. (3)

The probabilities to win higher prizes can be defined accordingly. Note that each player

wins the contest with positive probability and that this probability is increasing in his

own effort and decreasing in the efforts of his rivals. The parameter s ≥ 0 is the same

for both contests. It measures the sensitivity of the contests’ outcome with respect

to players’ efforts. For s → 0 the contests’ outcome is independent of players’ efforts

and every player is equally likely to win. The sensitivity of outcomes with respect to

players’ efforts is increasing in s. For s → ∞ the contests’ outcome is determined

of earlier players from later players. Hence our results remain valid under sequential entry as long as
players cannot communicate with each other.

9While in sports contests and labor tournaments players observe the number of opponents directly,
in architectural contests this information is often supplied by the organizers. Myerson and Wärneryd
(2006) show that contest organizers have an incentive to do so because expected aggregate effort
in a contest with a commonly known number of participants is higher than in a contest with the
same expected participation but uncertainty about the number of players. In other contests, e.g.
procurement and promotional contests, the exact number of participants might be unknown but
players may have fairly accurate expectations due to the repeated nature of these contests. So far
only a few articles consider contests in which the number of participants is uncertain (see Münster
(2006) and references therein).
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entirely by players’ efforts. In this case, the player with the highest effort wins the first

prize, the player with the second highest effort wins the second prize, and so on. In

the next section we will show that the players’ contest choice depends crucially on the

parameter s.

As participation is assumed to be costless, players prefer to participate in some

contest rather than to not participate at all. Player n will therefore enter contest 1

with probability qn(v1, v2) ∈ [0, 1] and contest 2 with probability 1 − qn(v1, v2). As

players are identical we restrict our attention to the symmetric equilibria of the entry

game, where qn(v1, v2) = q∗(v1, v2) for all players.10

Although players always choose contests and effort in order to maximize their ex-

pected payoff, with respect to the contest organizers we will distinguish between dif-

ferent objectives. However, before we turn to the optimal contest design, in the next

section we consider the players’ contest choice for a given choice of prize structures

(v1, v2).

3 Contest choice

In this section we consider players’ contest choice given the prize structures v1 and

v2. The probability q∗(v1, v2) with which players enter contest 1 in equilibrium can be

derived as follows. We first consider the effort choice for all players n ∈ Ni participating

in contest i given the prize structure vi. This allows us to determine a player’s expected

payoff in contest i conditional on contest i having Ni participants, E[U i
n|Ni]. Next,

assuming that all players enter contest 1 with the same probability q, we can then

obtain a player’s expected payoffs from entering contest 1 or contest 2, respectively:

E[U1
n] =

N
∑

m=1

(N−1
m−1)q

m−1(1 − q)N−mE[U1
n|m] (4)

E[U2
n] =

N
∑

m=1

(N−1
m−1)(1 − q)m−1qN−mE[U2

n|m]. (5)

10We discuss the possibility of asymmetric equilibria at the end of Section 3.
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The equilibrium probability q∗(v1, v2) will be the unique solution of the equation

∆(q) ≡ E[U1
n ] − E[U2

n] = 0. (6)

Below we consider the players’ contest choice for different values of s. The main insight

of this section is that an increase in the sensitivity with which outcomes depend on

players’ efforts makes flatter prize structures relatively more attractive to participants

than steeper prize structures. Before we derive this result more generally we consider

the following three–player example in order to build some intuition.

An example

Suppose that N = 3, and contest 1 chooses to implement the winner–takes–all principle,

i.e. v1 = (1, 0, 0), whereas contest 2 awards two prizes, i.e. v2 = (k, 1 − k, 0) where

k ∈ [1
2
, 1).11 Consider first the extreme case where s = 0. In this case the contests’

outcome is completely random and players will exert zero effort. In contest i a player

wins the first prize when he happens to be the only participant. Otherwise his expected

payoff is 1
Ni

with Ni being the number of participants of contest i. Hence if every player

participates in contest 1 with probability q then each player expects the payoff

E[U1
n] = (1 − q)2 · 1 + 2q(1 − q) ·

1

2
+ q2 ·

1

3
(7)

from entering contest 1 whereas the expected payoff from entering contest 2 is given

by

E[U2
n] = q2 · k + 2q(1 − q) ·

1

2
+ (1 − q)2 ·

1

3
. (8)

Suppose that each contest expects the same number of participants, i.e. q = 1
2
. Then

E[U1
n] > E[U2

n] and all players strictly prefer to enter contest 1. Even though players are

risk neutral and the likelihood to meet an opponent is identical in both contests, players

prefer the winner–takes–all contest as it offers a higher award in the case where a player

turns out to be the only participant. Hence in equilibrium contest 1 has to expect a

higher number of participants than contest 2. Indeed, in equilibrium q∗ = 2−
√

6k−2
3(1−k)

> 1
2

11We are indebted to one of the anonymous referees for suggesting this example.
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and the expected number of participants in contest 2 is decreasing in 1 − k, i.e. the

fraction of prize money contest 2 awards as a second prize.

Next consider the other extreme case where s → ∞. As before, in each contest

a player will exert zero effort and win the first prize if he happens to be the only

participant. If Ni > 1 players have entered the same contest i then in every equilibrium

of the simultaneous effort choice game each player expects the payoff vNi

i (see Barut

and Kovenock (1998)). For s → ∞ competition is so strong that players expect zero

payoffs when the number of participants is strictly larger than the number of prizes.

Hence a player’s expected payoff from entering the winner–takes all contest is given by

E[U1
n ] = (1 − q)2 · 1 (9)

whereas the expected payoff from entering the two prize contest is given by

E[U2
n] = q2 · k + 2q(1 − q) · (1 − k). (10)

Note that for q = 1
2

it holds that E[U1
n] = 1

4
< 2−k

4
= E[U2

n ]. Even though the

winner–takes–all contest offers a higher award in the case where a player turns out to

be the only participant, all players strictly prefer the two–prize contest. The reason

for this is the fact that in the two–prize contest competition is mitigated. While in the

winner–takes–all contest, players expect zero payoffs when they meet one opponent,

in the two–prize contest their expected payoff is strictly positive and given by the

second prize, 1 − k. Because for q = 1
2

the likelihood to meet one opponent is twice

as high as the likelihood to meet no opponent at all, this advantage of the two–prize

contest outweighs its disadvantage in the case where a player turns out to be the only

participant. Indeed, in equilibrium q∗ = 2−k−
√

1−k+k2

3(1−k)
< 1

2
and the expected number of

participants in contest 2 is strictly increasing in 1− k, i.e. the fraction of prize money

contest 2 awards as a second prize.

General results

The above example suggests that players prefer to enter single–prize contests when the

sensitivity s of outcomes with respect to effort is sufficiently low, whereas multiple–

prize contests are more attractive when s is sufficiently high. In the remainder of this
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section we generalize this insight to the case of an arbitrary number of players and

prizes.

We start our analysis by considering low values of s. As payoffs are continuous with

respect to s we can focus on the limiting case where s → 0 while our results remain

valid as long as s is sufficiently small. For s → 0, each participant n ∈ Ni of contest i

is equally likely to win any of the prizes v1
i , . . . , v

Ni

i , irrespective of the players’ efforts.

Hence in the limit all players will exert zero effort and player n’s expected payoff in

contest i conditional on contest i having Ni participants is

lim
s→0

E[U i
n|Ni] = v̄i(Ni) (11)

for all n ∈ Ni, where

v̄i(m) =
1

m

m
∑

m′=1

vm′

i (12)

denotes the average of the m highest prizes in contest i.12 In the Appendix we prove

the following:

Proposition 1 Suppose that s is sufficiently small. If vi 6= ( 1
N

, 1
N

, . . . , 1
N

) for some

i ∈ {1, 2} then the (v1, v2) entry game has a unique symmetric equilibrium q∗(v1, v2).

The expected number of participants in contest i is strictly larger than in contest j if

and only if P 0(vi) > P 0(vj) where P 0(v) ≡
∑N

m=1(
N−1
m−1)v̄(m).

Note that when players enter both contests with equal probability q = 1
2

then a player’s

expected payoff in contest i is given by 1
2N−1 P

0(vi). Hence if q = 1
2

and P 0(v1) > P 0(v2)

then players expect a higher payoff in contest 1 than in contest 2. As in the three–player

example in equilibrium it therefore has to hold that q∗(v1, v2) > 1
2
.

P 0(vi) is a weighted sum over the terms v̄i(m). As v̄i(m) denotes the average of the

m highest prizes in contest i, a transfer of prize money from a smaller prize vm+1
i to

a larger prize vm
i increases v̄i(m) without decreasing v̄i(m + 1). In particular, P 0(vi)

12Note that in the case where the number of participants falls short of the number of strictly positive
prizes, the remaining prize money is retained by the organizer. Proposition 1 remains valid as long as
the organizer retains a positive fraction of this money.
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is maximized by setting vi = (1, 0, . . . , 0). Hence Proposition 1 implies that when the

sensitivity of outcomes with respect to efforts is sufficiently small, a winner–takes–all

contest attracts more participation than any other contest. Player’s prefer a winner–

takes–all contest because it minimizes the chance that some share of the prize money

is retained by the organizer which happens whenever the number of participants falls

short of the number of strictly positive prizes.

Note that the existence of several contests is crucial for this result. In a monopolistic

model with a single contest, risk neutral players would be indifferent with respect to

different prize structures when s → 0. The result is driven by the fact that players face

uncertainty about the number of rivals they will encounter. In a model with a single

contest and an exogenously given set of players this uncertainty is absent.

We now turn our attention to the opposite case where outcomes are extremely

sensitive with respect to players’ efforts. When s is large, small increases in a player’s

effort lead to large increases in his likelihood of winning. In the extreme case, s → ∞,

the contests’ outcome is determined entirely by the players’ efforts. In particular, the

player with the highest effort wins the first prize (with certainty), the player with the

second highest effort wins the second prize and so on. An important example for this

type of contest is an all–pay auction.13 Barut and Kovenock (1998) have characterized

the equilibria of an all–pay auction with identical risk–neutral players and several not

necessarily identical prizes. For s → ∞ their results apply here. Barut and Kovenock

(1998) show that in a contest with Ni participants in every equilibrium each player

n ∈ Ni obtains the expected payoff

lim
s→∞

E[U i
n|Ni] = vNi

i . (13)

Due to the high sensitivity of outcomes with respect to efforts, the Ni participants

compete so fiercely for the first Ni prizes that none of them is able to obtain a higher

(expected) payoff than vNi

i . All of the potential gains in prize money v1
i −vNi

i are spent

in form of effort costs. Using this result, in the Appendix we prove the following:

13In an all–pay auction all bidders pay their bids and then the goods are allocated according to the
ranking of bids. In the literature on contest design, all–pay auctions have been frequently used as a
modeling device (see for example Moldovanu and Sela (2001 and 2006)).
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Proposition 2 Suppose that s is sufficiently large. If vi 6= ( 1
N

, 1
N

, . . . , 1
N

) for some

i ∈ {1, 2} then the (v1, v2) entry game has a unique symmetric equilibrium q∗(v1, v2) ∈

(0, 1). The expected number of participants in contest i is strictly larger than in contest

j if and only if P∞(vi) > P∞(vj) where P∞(v) ≡
∑N

m=1(
N−1
m−1)v

m.

Analog to the case where s = 0, when all players enter both contests with equal

probability (q = 1
2
), a player’s expected payoff in contest i is given by 1

2N−1 P
∞(vi).

Hence when P∞(v1) < P∞(v2) then in equilibrium it has to hold that q∗(v1, v2) < 1
2
.

P∞(vi) is the sum over contest i’s prizes vm
i weighted by the binomial coefficients

(N−1
m−1). As N ≥ 3, the binomial coefficient for m = 1 is strictly smaller than the

coefficients for m ∈ {2, N − 1}. Hence when contest 1 sets v1
1 = 1, it holds that

P∞(v1) < P∞(v2) for all v2 6= (1, 0, . . . , 0). Proposition 2 therefore implies that when

the sensitivity of outcomes with respect to efforts is sufficiently large, a winner–takes–

all contest attracts less participation than any other contest.

Players prefer a single first prize when s is small but multiple prizes when s is large.

The reason for this is that for large values of s, competition amongst players is very

strong. In order to win a contest a player has to exert more effort than his rivals. As

players are relatively unlikely to be the only participant in the contest of their choice

they prefer contests that mitigate competition by awarding multiple prizes.

We now derive the threshold s̄ that determines whether single prize contests attract

more or less participants than multiple prize contests. We want to understand how

this threshold depends on the total number of potential participants N . To keep the

analysis as simple as possible for the remainder of this section we assume that contests

are restricted to award at most two prizes, i.e. vi = (v1
i , 1− v1

i , 0, . . . , 0) for i = 1, 2. In

the Appendix we show that our results remain valid when this assumption is relaxed.

For 0 < s < ∞ and Ni ≥ 2 each player n ∈ Ni who participates in contest i chooses

effort en in order to solve

max
en≥0

[

p1
n(en, e−n)v1

i + p2
n(en, e−n)(1 − v1

i ) − en

]

. (14)

A symmetric pure strategy equilibrium can be derived by calculating the first order
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condition and substituting en = e∗ for all n ∈ Ni. We find that

e∗ =
s

Ni

(

Ni − 1

Ni

−
1 − v1

i

Ni − 1

)

(15)

and in equilibrium each player n ∈ Ni expects the payoff

E[U i
n|Ni] =

1

Ni

(

1 − s

(

Ni − 1

Ni

−
1 − v1

i

Ni − 1

))

. (16)

Note that this equilibrium is unique and it exists if and only if s ≤ N
N−1

. A player’s

equilibrium effort strictly increases in s whereas his expected payoff decreases. The loss

in payoff is higher the larger is the first prize v1
i . As a consequence in the Appendix

we are able to prove the following:

Proposition 3 Suppose that s ∈ (0, N
N−1

]. If vi = (v1
i , 1 − v1

i , 0, . . . , 0) with v1
1 > v1

2

then the (v1, v2) entry game has a unique symmetric equilibrium q∗(v1, v2) ∈ (0, 1). The

expected number of participants in contest 1 is strictly smaller (larger) than in contest

2 if and only if s > (<) s̄ where

s̄ ≡

(

N−1
∑

m=1

(N−1
m )

m(m + 1)

)−1

∈ (0, 1) (17)

is strictly decreasing in N with limN→∞ s̄ = 0.

Proposition 3 shows that a single prize contest attracts more participation than a

multiple prize contest if and only if s < s̄. As the number of potential participants

increases, the threshold s̄ decreases and multiple prize contests become more attractive.

This is because the higher the number of potential opponents the more important it

becomes for the players to choose a contest in which competition is mitigated. As the

number of potential participants N grows infinitely large the threshold s̄ converges

towards zero. Hence as long as s > 0 so that the contests’ outcome may be influenced

at least to some extent by the players’ efforts, a contest that awards multiple prizes

will attract more players than a winner–takes–all contest if N is sufficiently large.

Note that for N → ∞ players expect to meet an infinite number of opponents in

each contest. This implies that for N → ∞ players are indifferent with respect to the
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contests’ prize structures and q∗(v1, v2) → 1
2
. Hence for N → ∞ participation effects

become negligible. Participation effects are strongest when the number of potential

participants is small.

Finally let us comment on the possibility of asymmetric equilibria. In our analysis

we have assumed that in equilibrium all players behave symmetrically by entering

contest 1 with the same probability q∗(v1, v2). This assumption is reasonable as players

are identical. However, there do also exist asymmetric equilibria. For instance, some

players may enter contest 1 with certainty (q = 1) while others enter contest 2 (q = 0).

To see this consider again the three–player example above. For s = 0, two players

choosing contest 1 and one player choosing contest 2 constitutes an equilibrium. As

participation is higher in contest 1, the prediction of Proposition 1 extends to this

asymmetric equilibrium. However, there also exists an asymmetric equilibrium in which

one player enters contest 1 and two players enter contest 2 so that Proposition 1 fails

to hold. For s = ∞ only the latter equilibrium exists and Proposition 2 remains valid.

Hence our results in this section depend at least to some extent on the assumption

that in equilibrium identical players will behave symmetrically. Nevertheless, allowing

for asymmetric equilibria, we expect the implications for the contests’ choice of prize

structure to remain valid if contests contemplate that each of these equilibria will occur

with equal probability.

In this section we have shown that players’ contest choice depends on the contests’

allocation of prizes while empirical evidence for this dependence is contained in Section

5. In the presence of several contests, organizers therefore have to account for the fact

that prize structures not only influence players’ incentives to exert effort but also their

incentives to participate. In the following section we will consider the implications of

these participation effects for a contest’s optimal allocation of prizes.

4 Equilibrium prize structure

Contests need to attract participants, without participants there is no contest. Refer-

ring to the recent contests for European 3G telecom licenses, Paul Klemperer (2002)

notes that “a key determinant of success [...] was how well their designs attracted entry
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[...]”. An indication of the importance of participation is the fact that the ordering

of these contests with respect to revenue per population coincides with their ordering

with respect to the number of participants. For example while the UK contest had 13

participants and lead a revenue of 642 Euro per capita, those numbers are reduced to

6 participants and 173 Euro for the Netherlands and 3 participants and 44 Euro for

Belgium.

In general, contest organizers differ with respect to their objectives. In the above

example organizers were interested in the maximization of total revenue. Similarly,

science and engineering contests often aim to maximize participants’ aggregate effort.

On the other hand, in promotional contests, student competitions and sports contests,

organizers might have the objective to maximize the number of participants. In this

section we derive the contests’ equilibrium prize structure for both of these objectives.

To start with, suppose that contest organizers award prizes in order to maximize

the (expected) number of participants. In particular, contest 1 chooses v1 to maximize

Nq∗(v1, v2), whereas contest 2 chooses v2 to maximize N(1−q∗(v1, v2)). In this case the

implications of our results in Section 3 are immediate. For example, for s sufficiently

small, Proposition 1 implies that awarding a single first prize is a strictly dominant

strategy for each contest. Hence in equilibrium both contests will award their entire

prize budget to the winner. In contrast, for s sufficiently large, Proposition 2 implies

that in equilibrium each contest will award N∗ identical prizes, where N∗ = N+1
2

for N

odd and N∗ = N+2
2

for N even, because this prize structure is the unique maximizer

of P∞(v).

To understand the intuition for this result consider for example the case where

N = 7. It is immediate from Proposition 2 that in equilibrium both contests will choose

the same prize structure and players will enter both contests with equal probability.

The likelihood that a player who enters contest i finds himself in a contest with m par-

ticipants expecting the payoff vm
i is therefore given by 1

26 (
6

m−1). This likelihood is maxi-

mized for m = N∗ = 4 and players therefore prefer the contest which awards the highest

4th prize. The prize structure that maximizes v4
i is given by vi = (1

4
, 1

4
, 1

4
, 1

4
, 0, 0, 0). In

equilibrium both contests will therefore award four identical prizes.

While contests award a single first prize when s is small, they choose N∗ identical
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prizes when s is large. By restricting the number of prizes that contests are allowed

to award, in the Appendix we are able to show that the number of prizes awarded in

equilibrium increases monotonically in s.

Finally, a direct consequence of Proposition 3 is that for s > 0 in equilibrium

contests will award multiple prizes if the number of potential participants is sufficiently

high. We summarize these results in the following:

Proposition 4 Suppose that contest organizers aim to maximize the (expected) number

of participants. The prize structure that contests choose in equilibrium depends on the

sensitivity of outcomes with respect to players’ efforts, s, and the number of potential

participants, N :

1. If s is sufficiently small, each contest will award a single first prize, i.e. v∗
1 =

v∗
2 = (1, 0, . . . , 0).

2. If s is sufficiently large, each contest will award N∗ identical prizes, i.e. v∗
1 =

v∗
2 = ( 1

N∗
, . . . , 1

N∗
, 0, . . . , 0), where N∗ = N+1

2
for N odd and N∗ = N+2

2
for N

even.

3. If N ≥ 6 and contests are restricted to award at most three prizes, then the

equilibrium prize structure is v∗
1 = v∗

2 = (1, 0, . . . , 0) for s ∈ (0, s̄), v∗
1 = v∗

2 =

(1
2
, 1

2
, 0, . . . , 0) for s ∈ (s̄, ¯̄s), and v∗

1 = v∗
2 = (1

3
, 1

3
, 1

3
, 0, . . . , 0) for s ∈ (¯̄s, N

N−1
)

where s̄ and ¯̄s are as defined in (17) and (37) respectively and 0 < s̄ < ¯̄s < 1.

4. If s > 0 and N is sufficiently large then contests will award multiple prizes.

Proposition 4 shows that when organizers aim to maximize participation, and the

sensitivity of outcomes with respect to players’ efforts is small, contests will award

their entire prize budget to the winner. One example that fits these assumptions are

promotional contests. In a promotional contest organizers typically aim to maximize

the number of participating households and participants may influence their chance of

winning only marginally. Indeed one can find many examples for promotional contests

that award a single grand prize. For instance, the Home and Garden Television “Dream
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Home Giveaway” awards a single prize valued in excess of one million dollars once every

year.

Proposition 4 also suggests that equilibrium prize structures depend in a monotone

way on the parameter s. As s increases, the number of prizes awarded in equilibrium

increases whereas the fraction of prize money awarded to the winner decreases. As an

application of our theory, in Section 5 we provide empirical evidence for this relationship

using data from professional road running.

Before we do so however, let us now follow most of the literature on contest design

by considering contests that aim to maximize players’ aggregate effort. Let s → ∞

and suppose that contest i happens to have Ni participants. The expected payoff of

player n ∈ Ni is given by (13) and in equilibrium each player is equally likely to win

any of the first Ni prizes. Hence in equilibrium player n is expected to exert the effort

E[ei
n|Ni] = v̄i(Ni)−vNi

i and expected aggregate effort in contest i conditional on contest

i having Ni participants is

E[Σei|Ni] = Ni[v̄i(Ni) − vNi

i ] =

Ni
∑

m=1

(vm
i − vNi

i ) (18)

Note that for a given number of participants Ni, steeper prize structures lead to higher

levels of aggregate effort and aggregate effort is maximized when vi = (1, 0, . . . , 0). Ex

post, once entry has taken place, aggregate effort would therefore be maximized by

awarding a single first prize.

Also note however, that aggregate effort increases in Ni. That is, for a given prize

structure, aggregate effort increases in the number of participants. If players enter

contest 1 with probability q(v1, v2) ∈ [0, 1] then expected aggregate efforts in contest 1

and contest 2 are given by

E[Σe1] =
N
∑

m=2

[q(v1, v2)]
m[1 − q(v1, v2)]

N−m(N
m)m[v̄1(m) − vm

1 ] (19)

E[Σe2] =

N
∑

m=2

[1 − q(v1, v2)]
m[q(v1, v2)]

N−m(N
m)m[v̄2(m) − vm

2 ]. (20)

If contests aim to maximize (expected) aggregate effort then in equilibrium, contest i

will choose vi to maximize E[Σei]. As q(v1, v2) depends on the contests’ prize struc-

19



tures, awarding multiple prizes rather than a single prize has a direct and an indirect

effect on aggregate effort. On the one hand, multiple prizes decrease aggregate effort

directly through their detrimental effect on incentives to exert effort for a given set of

participants. On the other hand multiple prizes increase expected participation and

thereby raise aggregate effort indirectly. In the Appendix we show that for s → ∞ the

incentive effect outweighs the participation effect, making a single first prize optimal.

Because participation effects are strongest for s → ∞ this finding extends to all s < ∞.

In particular we have the following:

Proposition 5 Suppose that contest organizers aim to maximize (expected) aggregate

effort. The prize structure that contests choose in equilibrium is independent of s and

N . Each contest will award a single first prize, i.e. v∗
1 = v∗

2 = (1, 0, . . . , 0).

Proposition 5 shows that second and higher order prizes cannot be used to increase

expected aggregate effort. The negative incentive effect outweighs the possibly positive

participation effect and the overall effect is a reduction in expected aggregate effort.

Expected aggregate effort is highest in a single prize contest. If expected aggregate

effort was higher in a multiple prize contest then all players would strictly prefer the

single prize contest where they expect to win higher prizes at lower levels of effort.

Proposition 5 is important as it provides justification for the literature’s focus on an

exogenously given set of participants. It shows that when players are homogeneous, risk

neutral, and have linear costs of effort, winner–takes–all contests maximize aggregate

incentives even when the set of participants is endogenous.

One example where organizers care about aggregate efforts are science and engi-

neering contests. In line with Proposition 5 many of these contests, as for example

the Progressive Insurance Automotive X PRIZE or the Defense Advanced Research

Projects Agency’s Grand Challenge driverless car competition, award their entire prize

budget to the winner.

Note that the results of this section remain valid when contests are allowed to pay

players for their attendance. To see this suppose that in an initial stage contests can

approach individual players and offer attendance pay which players can either accept

or reject. After this initial stage the timing is as specified before. In the subgame that
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starts after each contest has signed up N s ≤ N
2

players for a total attendance payment

of A ≤ V competition in prize structures will take place as described in Propositions

4 and 5 if we substitute N by N − 2N s and the contests’ prize budget is reduced to

V − A.

5 Empirical Framework

In this section we will test our theory using data from professional road running. In

order to do so we have collected a dataset that contains almost 400 road running

contests. Running is an internationally important industry. In the US alone, the

industry grossed $55.7 billion in 2005, with a higher than average annual growth rate

of 6.8 percent.

There are various reasons for using road running data rather than data from other

types of contests. First, in contrast to labor tournament data, the outcomes of road

running races are invariably rank ordered and the measurement of individual perfor-

mance is straight forward. Second, running contests are organized at a disaggregate or

“firm” level instead of being governed by a federation, as it is the case for many other

sports such as tennis and golf. Third, although different in their race course, road run-

ning contests are almost identical with regard to their organizational set–up.14 Finally,

as media interest and sponsor support are crucial determinants of a race’s success,

participation is of utmost importance. One may therefore expect that the organizers

of a road running race care for both, runners’ efforts and participation.15 In fact, the

provision of incentives to exert effort might be less of an issue than it is in most other

applications.

As our theoretical results are concerned with the sensitivity s with which outcomes

depend on players’ effort, we need to consider contests that exhibit variation in s. We

do so by allowing for races of different distances. Below we argue that longer races

14Race directors, who are typically running clubs, event management companies, charities or recre-
ation departments, tend to fulfill a common set of objectives. Some of the issues that they must
consider are sponsorship, course design, supplies and equipment, and timing and scoring.

15The prestigious Race Director of the Year Award (http://www.rrm.com/rdm/rdy.htm) is based
on several factors, including the participation of top runners.
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are more likely to be affected by exogenous factors and are therefore less sensitive with

respect to changes in runners’ effort than shorter races. As a consequence, race–distance

serves as a measure of s.

Using the relationship between race distance and sensitivity, we can empirically

test three predictions of our model.16 If contest organizers care about participation

(at least to some extent) and their objectives are independent of the race–distance,

then our results in Section 4 imply that, (1) longer races will choose steeper prize

structures. Indeed, our empirical analysis below confirms this finding. (2) In Section

3 we showed that for low values of sensitivity, players prefer to enter contests with

steeper prize structures whereas for high values of sensitivity, flatter prize structures

are preferred. This result suggests that in long races, steep price structures will be

relatively more attractive to participants than in short races. In fact, our empirical

results below indicate that by offering steeper price structures, long races are more

successful in attracting the top ranked runners, whereas for short races there seems

to be no significant relationship between prize structures and participation. (3) A

contest’s expected winning performance depends on two factors; the set of participants

and their efforts. Our theory has shown that both of these factors are influenced by

a contest’s prize structure. Irrespective of the contest’s sensitivity s, a steeper prize

structure induces higher efforts, thereby improving the expected winning performance.

However, as argued above, participation effects depend on s. In particular, a steeper

prize structure increases the participation of top runners in a long race but has no

effect on participation in a short race. Hence our model predicts that an increase

in the steepness of the prize structure will improve the winning times in long races,

whereas the effect will be weaker in short races. Our empirical results offer suggestive

evidence in this direction.

The empirical literature on contest design is scarce and the few articles that do exist

test whether prize levels and prize differentials have incentive effects.17 For example,

Ehrenberg and Bognanno (1990a, b) use individual player and aggregate event data

16We thank one of the anonymous referees for his suggestions with respect to the empirical testing
of our model.

17For a recent review of the literature that uses sports data to test contest theory, see Frick (2003).
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from US and European Professional Golf Associations to test whether prizes affect

players’ performance. There are two articles that share our focus on professional road

running. Both articles seek to test the hypothesis that prize structures affect finishing

times. Maloney and McCormick (2000) use 115 foot races in the US and find that

the average prize and prize spread have negative effects on finishing times. Lynch and

Zax (2000) use 135 races and also find that finishing times are faster in races offering

higher prize money. While Lynch and Zax (2000) fail to distinguish between incentive

effects and participation effects, Maloney and McCormick (2000) argue that most of

the improvement in finishing times is due to the fact that larger prize purses attract

a higher number of top runners. Although we share this finding with Maloney and

McCormick (2000) our results regarding the differential effect of prize structures on

participation in races of differing distances goes beyond the scope of their analysis.

Race distance as a measure of sensitivity

There are two strands of support for the assertion that in longer races winning prob-

abilities are less sensitive to changes in runners’ efforts. Firstly, the longer the race,

the stronger is the influence of external factors, like weather conditions, race course

profile, or nutrition, on the runners’ performance. This was evident during the 2004

Olympic Games in Athens. In the women’s marathon the highly acclaimed world

recorder holder, Paula Radcliffe, was predicted to win. However, after a consistent

lead, at the 23rd mile mark, Paula stopped and sat crying on the side path suffering

the symptoms of heat exhaustion.

Secondly, there exists statistical evidence showing that longer races exhibit a higher

level of randomness than shorter races. This evidence has been kindly provided to

us by Ken Young, a statistician at the “Association of Road Racing Statisticians”

(www.arrs.net). Using a data set containing more than 500,000 performances, Ken

Young has predicted the outcome of several hundred road running contests of varying

distances between 1999 and 2003. As an example, Table 1 reports his results for the

Men’s races in 1999.18

18The complete set of results is available on http://www.econ.upf.edu/azmat/.
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Two distinct methods were used to predict the winner of a given race. A regression

based handicapping (HA) evaluation attempts to predict each runner’s finishing time

based on past performance. The predicted time was assumed to be normally distributed

for each runner and the numerical integration yielded the probability that each runner

would win the race. The second method was a Point Level (PL) evaluation based on

a rating system similar to the Elo system in chess or the ATP ranking in tennis, in

which runners take points from runners they beat and lose points to runners they are

beaten by.

Averaging over 274 Men’s races with distances between 5km and 42km, the PL

prediction of the winner was correct in 43% of the “Short” races (distance ≤ 10km),

41% of the “Medium” races (10km < distance < 42km) and 20% of the Long races

(distance ≥ 42km). For the HA prediction the numbers are 45%, 46%, and 21%

respectively. Hence, while Short and Medium distance races are similar, Long distance

races appear to be much more random.

Data Description

The empirical investigation is done using data on professional road running from the

Road Race Management Directory (2004). This Directory provides a detailed account

of the prize structures, summaries, invitation guidelines, and contacts for almost 500

races. It is a major source of information for elite athletes planning their race season.

With the exception of a few, most of the races took place in the United States. The

event listings are arranged in chronological order beginning in April 2004 and extend

through to April 30th 2005. In our analysis, we only include races that have a race

distance of at least 5km, leaving us with 368 races. Excluding races with shorter

distances leaves us with a more homogeneous set of contests as these races are often

charity events, fun runs, or track events.

The Directory provides us with information on the event name, event date, as well

as its location. The prize money information includes the total amount of prize money,

as well as the prize money breakdown. We focus on the Men’s races by including only

the Men’s prize money distributions. The Directory contains further information that

may influence runners’ race selection. In particular, it includes data on whether a
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race was a championship, took place on a cross country or mountain course, and the

race’s winning performance in the previous year.19 Finally, the Directory also provides

us with information about the size of the event by stating last year’s total number

of participants. This number typically consists of a large share of amateur runners

who rarely win prize money and whose race participation is unlikely to be affected by

the race’s prize structure. This information is therefore only used to control for the

popularity of the event in the world of running.

In order to test how prize structures influence participation, we have collected

additional data on the participation of top runners. As race organizers benefit from

media coverage and sponsor support, they aim to attract as many runners as possible

from a given set of top runners. In order for us to define the set of top runners over

a given distance, we use the 2003 ranking of best athletic performances. Because

the performance in the 2004 races may be contained in the 2004 rankings we use

the previous year ranking (2003) to avoid endogeneity problems. For long races, we

employ the ranking provided by the International Association of Athletics Federations

(IAAF).20 As shorter races have a more local character and are less likely to attract

participants at an international level, we use the US–ranking provided by the internet

site Active.com for race distances smaller than 42km.21 In addition, for 332 out of the

368 races in our data set, we are able to identify the names and finishing times of the

top 100 male finishers using the races’ individual websites. Using the rankings of best

performance, we count how many of these runners were amongst the top finishers in

the current years’ races. This provides us with a measure for how many top runners

19In order to make finishing times in races over different distances comparable with each other, we
use the Riegel formula (see Riegel (1981)) to calculate 10km equivalent finishing times. This formula
predicts an athlete’s finishing time t in a race of distance d on the basis of his finishing time T in a
race of distance D as t = T ( d

D
)1.06. It is used by the IAAF to construct scoring tables of equivalent

athletic performances.
20The IAAF is the international governing body for the sport of athletics. It provides an annual

international “top list” of race finishing times (by gender and race category). In some cases, the
same runner has achieved several of the ranked top performances in different races. We restrict our
attention to the top 200 runners.

21Active.com is a comprehensive website for outdoor sports. It provides runner rankings based on
races that took place in the US. As with the IAAF, we restrict our attention to the top 200 runners
in each race category.
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were attracted by any given race.

Finally, given that the weather conditions play a role in the outcome of an outdoor

race, a runner’s decision on whether to participate in a given race may also be affected

by the weather that he expects on the race day. For example, if a runner is accustomed

to running in warm climates, he may derive an advantage from entering races that take

place in the summer. In order to control for this, we have collected information on

the weather using an internet site called Weatherbase (www.weatherbase.com). The

information includes, the average temperature and average rainfall in the month and

the place where the race takes place. We use this information when we estimate the

participation of top runners.

Table 2 presents the summary statistics for three race distance categories: “Short”

(distance ≤ 10km); “Medium” (10km < distance < 42km) and “Long” (distance ≥

42km). In general, races tend to be clustered into certain distance categories. The most

common categories being 5km, 10km, 16km, 21km and 42km. Most runners specialize

and run either Short or Long distance races, while Medium distance races are run by

both types.

From the summary statistics in Table 2 we see that there are some obvious dif-

ferences between the three distance categories. In particular, the mean total prize

money (in US$) increases as the distance increases ($2,990, $5,664 and $23,207, re-

spectively).22 The average size of the event also increases with distance (3,359, 5,268

and 5,324, respectively). These differences reflect the fact that shorter races have a

more regional appeal and are therefore smaller than longer races. There are, how-

ever, many similarities in variables that are important when comparing across race

categories. In particular, the average number of top runners is similar across distance

categories. There is consistency in the weather variables when we look across the race

types, although longer races tend to exhibit slightly colder climates. In addition, there

is a similar probability that the race has a championship status and the average Riegel

22We use the sum of the top 10 Men’s prizes as the “total prize money”. This variable is more
important for the race choice of male runners than the race’s total prize budget which also includes
prize money distributed to female and junior runners. For comparison of prize money across coun-
tries, we convert all prizes into US dollars using monthly historical exchange rates for 2004–2005
(www.gocurrency.com).
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measure of last year’s winning performance is almost identical.

Analysis

Prediction 1: Longer races exhibit steeper price structures.

The positive relation between a race’s distance and the steepness of its prize structure

is strikingly exemplified by the 2004 Boston Marathon that awarded 10000$ to the

winner and 4000$ to the runner–up, compared with the Boston Half Marathon which

paid 5000$ and 2500$, respectively. To obtain estimates for the differences in prize

structure, we estimate the following compensation equations using 368 men’s races:

Yi = α + βDi + εi. (21)

Yi represents the steepness of the prize structure and Di denotes the distance and acts

as our measure of sensitivity for race i. We use various measures of steepness Y : (1) a

concentration index (C. I.), similar to the Herfindahl-Hirschman index, calculated from

the top three prizes, i.e. Y = (1st)2+(2nd)2+(3rd)2

(1st+2nd+3rd)2
, (2) the ratio between first and second

prize, (3) the ratio between first and third prize and (4) the ratio between first prize

and total prize money. We expect these measures to increase with the race distance.

We use a continuous measure of distance D, as well as a discrete comparison between

Short, Medium and Long distance races, i.e., indicator variables. As mentioned earlier,

races tend to be clustered and so it is more informative to look at how the prize

structure changes when we compare each group. In doing so, we can estimate the

percentage point change in the prize structures’ steepness when going from Short to

Medium or to Long races.

We report the results for all four measures of steepness, using the two different

distance measures in columns (1) to (4) Table 3, Panels A and B. Overall, the results

support the hypothesis that as the distance increases, the prize structure becomes

steeper. In particular, using our concentration index we observe that as the distance

of a race increases by 1km, there is a 0.1% increase in steepness. This implies, for

example, that the prize structure of a Marathon is 3.7% more concentrated toward the

first prize than the prize structure of a 5km race. Similarly, we find that when the
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race changes from being Short to Long, there is a 3.2% increase in the concentration

index. To understand the economic significance of these effects, consider a typical 5km

race from our sample that awards three prizes of size 1000$, 750$, and 500$. If the

distance was increased to 42km, the results imply that the race’s prize structure would

become 1080$, 710$, and 460$.23 Hence, when moving from 5km to a Marathon, the

prize awarded to the winner increases by about 8% while the difference between first

and second prize increases by 48%. The coefficient of moving from Short to Medium is

positive but insignificant. This is reassuring, as with Ken Young’s analysis these races

had a similar degree of randomness.

When we look at the other measures of steepness, we observe very similar patterns.

In particular, we find that as the distance increases, the gap between the first prize

and the second or third prize widens. When the distance increases by 1km, there is a

0.1% rise in the ratio between the first and the second or third prize. When we look

across different race types, we see that the ratio between the first and second prize

increases by 3.0%, whereas the ratio between the first and the third prize increases by

2.5% when moving from Short to Long. The proportion of total prize money that goes

to the winner also increases with the distance but results are not significant.

Next, we extend the analysis of looking at the simple correlation to account for

various factors that may affect runners’ race selection and hence the prize structure.

We control for these factors by estimating the following equation:

Yi = α + βDi + δXi + εi. (22)

X includes an indicator identifying whether the race was a championship, its size in

2003, total prize money, the 10km Riegel equivalent of the previous edition’s winning

time, and an indicator for whether the race is a cross country or a mountain race. It is

reassuring to see that the results remain very similar to the results without controls. In

fact, as we can see in columns (5) to (8) of Table 3, Panels A and B, the coefficients for

all of the prize structure measures and both measures of distance are almost identical

with and without controls. In addition, it is important to note that the total prize

budget has no effect on the spread of prizes.

23The concentration indices for these prize structures are 0.3580 and 0.3717 respectively which is
consistent with a 3.7% increase.
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Finally, as we observe a large degree of heterogeneity across races, in particular with

respect to the total prize budget, we want to check that our results are not being driven

by this variation. We repeat the analysis above with restriction at different points of

the distribution of total prize money to ensure that our results remain robust. In

particular, we exclude races that are within the top 10% of the total prize money (i.e.,

above 21,500$); races within the bottom 10% (i.e., below 350$); and both, the top

and bottom 10%. In Table 4 we look at the relationship between the prize spread

and distance when we allow for these restrictions. It can be seen that neither the

point estimate of distance, nor the level of significance change when we impose these

restrictions.

Prediction 2: In longer races steep prize structures are more attractive to
participants than in shorter races.

In Section 3 we have shown that in contests whose outcome is sufficiently (in)sensitive

to players’ efforts, flatter (steeper) prize structures attract a higher number of partici-

pants. Moreover, the proof of Proposition 4 provides evidence for the monotonicity of

this relationship. In particular, the steepness of the players’ preferred prize structure is

monotonically decreasing in the sensitivity parameter s. Because s depends negatively

on race distance these results imply that in long races, steep prize structures should be

relatively more attractive to participants than in short races.

In the following we will therefore consider the influence of the prize structure on

runners’ participation decisions separately for each of the three distance categories. As

prize structures are important for the race choice of elite runners but negligible for am-

ateurs we will address the above issue by considering the number of top ranked runners

participating in each of the races, rather than their total number of participants. We

estimate:

PartDi = αD + βY D
i + δXD

i + εD
i (23)

where PartDi represents the participation of top ranked runners in race i, within dis-

tance group D ∈ {S, M, L}. Y denotes the steepness of the prize structure and X is

the vector of race event controls used in the previous section but now also includes

controls for the weather. By focusing on the variation within race categories, we can
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observe how many participants a race is able to attract for a given level of sensitivity.

In Table 5 we estimate the above equations using the concentration index, C.I.,

as the measure of steepness.24 For long races there exists a positive and significant

relationship between concentration and participation. In particular, if a long race

moved from a flat prize structure (C.I. = 0) to a winner-takes-all structure (C.I. =

1), it would attract an additional five (β = 4.6) top–ranked runners. For medium and

short races the corresponding coefficients are smaller as predicted by our theory. In

fact, the coefficients are negative but the effects fail to be statistically significant. This

insignificance may be a consequence of the small sample size coupled with a higher

variance in short and medium races, which might be explained by the fact that top

runners participate in only a few Marathons per year whereas shorter races are run more

frequently. To see this suppose that, as in our theoretical model, runners make their

race choice solely based on prize structures. If a long distance runner participates in

three events per year he will choose the races that offer the three best prize structures.

Similarly a short or medium distance runner participating in ten races will choose the

races with the ten best prize structures. As a consequence, the number of events that

are selected, despite awarding a sub–optimal prize structure is larger for short and

medium distance races than for long distance races. Hence the optimal race choice of

short and medium distance runners is subject to greater noise than the optimal race

choice of long distance runners. Note that in line with our earlier findings, there is no

statistical difference in β between medium and short races.

The only other important control variable is total prize budget. This, however,

seems intuitive. In our theoretical setup, the total prize budget is the same for all

races, such that participation decisions are based solely on the distribution of prizes.

If there is variation, it is reasonable to expect that the races offering more money will

attract more top ranked runners.

24We have replicated the analysis using all other measures of steepness and find very similar results.
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Prediction 3: In longer races steep prize structures have a more positive
effect on winning performance than in shorter races.

The winning time of a race will depend on the set of runners that participate and the

effort they exert. Maloney and McCormick (2000) find that an increase in the total

prize budget, as well as an increase in prize spreads leads to faster winning times. Mal-

oney and McCormick attribute the improvement in response to a higher prize budget

to participation effects. In contrast, they attribute improvements associated with a

greater prize spread to be the result of an incentive effect. However, our theoretical as

well as our empirical results so far, suggest that prize spreads not only have incentive

but also participation effects. In particular, we have seen that steeper prize structures

increase the number of top runners in long races but seem to have no significant ef-

fect in medium and short distance races. As steeper prize structures should imply

higher efforts in all races, regardless of distance, we would therefore expect that an

increase in the steepness of the prize structure will improve the winning times in long

races, whereas the effect will be weaker in medium and short distance races. Using the

variation (across distance) in the relationship between prize spread and participation

may therefore allow us to improve our understanding of the relative importance of

participation and incentive effects.

In line with Maloney and McCormick (2000) we first test whether total prize money

and prize structures affect winning times:

Wi = β0 + β1Yi + β2Pi + β3Di + β4X + εi. (24)

Wi is the winning time (seconds) for race i. Recall that to make finishing times in

races over different distances comparable with each other, we use the Riegel formula.

We control for the steepness of the prize structure, Yi, and the total prize budget Pi,

the distance categories Di, as well as the characteristics of the race event, X. An

important control variable in this regression is last year’s winning time (Riegel 2003).

As we do not have race fixed effects, this variable should capture some of the unobserved

differences across the races. For example as for historic reasons some races may attract

a stronger field than others, last year’s winning time can serve as a control for the

“competitiveness” of a given race. We estimate our equations with and without it.
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Second, to test whether there are differential effects in the relationship between

distance categories and the prize structures, we include interaction terms:

Wi = β0 + β1Yi + β2Pi + β3Di + β4X +
∑

D∈{S,M,L}
[γD(Y ∗ D)i + δD(P ∗ D)i] + εi (25)

where the parameters associated with the interaction terms γD and δD reflect the

differential effects of the prize amount and prize structure, respectively, across distance

categories.

Using the concentration index, C. I., as the measure of steepness in Table 6, we can

see that as the prize structure becomes steeper, the winning time improves although

the effect is not statistically significant.25 The winning time does improve significantly

as the total prize budget increases. In particular, from column (1), if the total prize

doubles, the winning time will fall by almost 0.2%. In column (2) when we control

for last years’ winning time (Riegel 2003), the coefficients remain negative but both

become insignificant. We find that there is no significant difference in the coefficients

on (adjusted) winning times across the different distance categories.26

In columns (3) and (4) we control for the interactions between distance categories

and prizes, with and without last year’s winning time, respectively. We find that for

all race categories, increases in the total prize budget improve the winning time signifi-

cantly. There is, however, a stronger effect on short and medium distance races. When

we look at the effects of the prize structure, we find that there is no statistically signif-

icant effect. However, the differences across the interaction coefficients are significant.

For example, the coefficients for short and long races are statistically different at the

10% level. As the interaction coefficient for short races is larger than the interaction

coefficient for long races this suggests that the effect of a steeper prize structure on

winning times is more positive in long races than in short races. This last result is

consistent with our earlier finding that in long races steep prize structures increase the

number of participating top runners whereas in short races they seem to have no effect.

Although these last results are not very strong, they are in line with the predictions

of our theory. They provide at least suggestive evidence for the fact that the alloca-

25We have replicated the analysis using other measures of steepness and find very similar results.
26The excluded category is the constant.
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tion of prizes influences a contest’s set of participants and hence its expected winning

performance.

6 Conclusion

In this article we have considered a model in which several contests compete for the

participation of a common set of players. We have studied how the players’ contest

choice is influenced by the contests’ prize structures. We find that if the players’

winning probabilities are sufficiently sensitive with respect to their efforts, contests

awarding multiple prizes will attract more participants than contests offering their

entire prize budget to the winner.

The implications for the contests’ (equilibrium) allocation of prizes depend on the

organizers’ objective. When organizers aim to maximize the number of participants,

multiple prizes will be awarded if and only if the sensitivity s of outcomes with respect

to players’ efforts is sufficiently high. Moreover, as this sensitivity increases, the num-

ber of prizes awarded in equilibrium increases and the share awarded to the winner

decreases. In contrast, when organizers aim to maximize expected aggregate effort,

contests will implement the winner–takes–all principle.

We have provided empirical support for the above results using data from profes-

sional road running. In particular, using race distance as a measure of sensitivity we

find evidence indicating that in long (less sensitive) races, steeper prize structures in-

crease the participation of top runners significantly whereas in medium and short races

there seems to be no significant relationship. This has implications for the contests’

allocation of prizes because race organizers care for the participation of top runners.

In particular, in our dataset longer races offer (significantly) steeper prize structures

than shorter races.

There are several interesting issues that go beyond the scope of our analysis. Be-

cause we use Tullock’s (1980) contest success function rather than deriving players’

winning probabilities from some stochastic mapping between efforts and performance,

our theory cannot predict the players’ expected winning performance. In reality, some

contests aim to maximize the players’ winning performance. For example, the orga-
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nizer of an architectural design competition might be interested in maximizing the

quality of the winning design proposal. According to the theory of order statistics, a

contest’s winning performance depends in a very strong way on the number of partici-

pants. Hence in such a setting participation effects might be strong enough to outweigh

incentive effects and multiple prizes might become optimal.

Another extension one might want to consider is to allow players to differ in ability,

i.e. their marginal cost of effort. Intuitively one might expect that contests with

steeper prize structures attract more able players. If this intuition is correct then

contests might use their prize structure in order to screen players thereby providing us

with a new argument for the use of a single first prize.

Finally, one of the assumptions of our model is that players can participate in only

one of the available contests. We expect our results to remain valid in a more general

model where players can simultaneously participate in several but not all available con-

tests. In such a model one could analyze how the equilibrium prize structure depends

on the number of contests players can participate in. We leave these issues for future

research.

Appendix

Proof of Proposition 1

Consider the limit as s → 0. In this case (11) holds and ∆(1
2) = 1

2N−1 (P 0(v1) − P 0(v2)). If

v1 6= ( 1
N

, 1
N

, . . . , 1
N

) 6= v2 then ∆ is strictly decreasing in q with ∆(0) = v1
1 − 1

N
> 0 and

∆(1) = 1
N

− v1
2 < 0. Hence ∆(q∗) = 0 defines a unique symmetric equilibrium q∗ ∈ (0, 1).

Moreover, q∗ > (<) 1
2 if and only if ∆(1

2) > (<) 0. If v1 = ( 1
N

, 1
N

, . . . , 1
N

) 6= v2 then ∆(1
2 ) < 0

and q∗ = 0 while for v1 6= ( 1
N

, 1
N

, . . . , 1
N

) = v2 it holds that ∆(1
2 ) > 0 and q∗ = 1. As

payoffs are continuous in s and the above inequalities are strict, the result holds as long as s

is sufficiently small.

Proof of Proposition 2

Consider the limit as s → ∞. In this case (13) holds and ∆(1
2 ) = 1

2N−1 (P∞(v1) − P∞(v2)).

If vi 6= ( 1
N

, 1
N

, . . . , 1
N

) for some i ∈ {1, 2} then ∆ is strictly decreasing in q with ∆(0) =
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v1
1 − vN

2 > 0 and ∆(1) = vN
1 − v1

2 < 0. Hence ∆(q∗) = 0 defines a unique symmetric

equilibrium q∗ ∈ (0, 1). Moreover, q∗ > (<) 1
2 if and only if ∆(1

2) > (<) 0. As the above

inequalities are strict and payoffs are continuous in s the result holds as long as s is sufficiently

large.

Proof of Proposition 3

For s > 0, in a contest with Ni ≥ 2 participants, players maximize their expected payoff by
choosing e∗ as defined in (15) and the maximized payoff E[U i

n|Ni] is given by (16). Note that
E[U i

n|Ni] ≥ 0 for all v1
i if and only if s ≤ Ni

Ni−1 . Hence the equilibrium defined in (15) and

(16) is unique and it exists for all vi and all Ni ≥ 2 if and only if s ≤ N
N−1 . We therefore have

E[U1
n] = (1 − q)N−1v1

1 +
N
∑

m=2

(N−1
m−1)q

m−1(1 − q)N−m 1

m

(

1 − s(
m − 1

m
−

1 − v1
1

m − 1
)

)

(26)

E[U2
n] = qN−1v1

2 +

N
∑

m=2

(N−1
m−1)(1 − q)m−1qN−m 1

m

(

1 − s(
m − 1

m
−

1 − v1
2

m − 1
)

)

. (27)

∆(q) = E[U1
n] − E[U2

n] is strictly decreasing in q with ∆(0) = v1
1 − E[U2

n|N ] > 0 and

∆(1) = E[U1
n|N ]−v1

2 = 1
N

(1−s(N−1
N

−
1−v1

1

N−1 ))−v1
2 < 1

N
(1−s(N−1

N
− 1

2(N−1)))−v1
2 < 1

N
−v1

2 < 0.

Hence ∆(q∗) = 0 defines a unique symmetric equilibrium and q∗ ∈ (0, 1). Note that ∆(1
2 ) = 0

if and only if s = s̄ where s̄ is as defined in (17). Also note that

∂∆

∂s
|q= 1

2

=
v1
2 − v1

1

2N−1

N−1
∑

m=1

(N−1
m )

m(m + 1)
< 0. (28)

As payoffs are continuous in q and in s it follows that q∗ < (>) 1
2 if and only if s > (<) s̄. It

is immediate from its definition that s̄ is strictly decreasing in N .

Proof of Proposition 4

In equilibrium contest 1 chooses v1 to maximize q∗(v1, v2) and contest 2 chooses v2 to maxi-
mize 1 − q∗(v1, v2). In what follows we will proof the three parts of Proposition 4:

Part 1: The prize structure v∗ that maximizes P 0(v) is unique and v∗ = (1, 0, . . . , 0).
Hence it follows from Proposition 1 that for each contest, v∗ is a strictly dominant strategy.
Therefore in equilibrium v1 = v2 = v∗.

Part 2: For N odd the binomial coefficient (N−1
m−1) increases in m for all m < N∗ = N+1

2 , is
maximized at m = N∗, and decreases for all m > N∗. Hence v∗ = ( 1

N∗ , 1
N∗ , . . . , 1

N∗ , 0, . . . , 0) is
the (unique) prize structure that maximizes P∞(v). Hence it follows from Proposition 2 that
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for each contest, v∗ is a strictly dominant strategy. Therefore in equilibrium v1 = v2 = v∗.
The argument for N even is similar.

Part 3: Consider the case where contests can distribute their prize budget between three
prizes. Although more tedious, for a higher number of prizes the following proof would work
analogously and we therefore expect our result to hold more generally. Suppose that contest
i has chosen the prize structure vi = (v1

i , v
2
i , v

3
i , 0, . . . , 0). For Ni = 1 it is immediate that

E[U i
n|Ni] = v1

i . For Ni = 2 we can derive the equilibrium effort as before and for s ≤ 2
we find that there exists a unique symmetric equilibrium given by e∗ = s

4(v1
i − v2

i ) and
E[U i

n|Ni] = (1
2 −

s
4)v1

i + (1
2 + s

4)v2
i . When Ni ≥ 3 players participate then we need to derive a

player’s likelihood to win the third prize. Conditional on player l winning the first prize and
player m winning the second prize, player n ∈ Ni wins the third prize v3

i with probability

p3
n|lm =

(en)s
∑

k∈Ni−{l,m}(ek)s
. (29)

Hence the (unconditional) probability that player n wins the third prize is given by

p3
n =

∑

l,m∈Ni−{n},l 6=m

p1
l p

2
m|lp

3
n|lm. (30)

where p1
l and p2

m|l are as defined in (1) and (2) respectively. Each player n ∈ Ni chooses
effort en in order to solve

max
en≥0

[

p1
n(en, e−n)v1

i + p2
n(en, e−n)v2

i + p3
n(en, e−n)v3

i − en

]

. (31)

A symmetric pure strategy equilibrium can be derived by calculating the first order condition
and substituting en = e∗ for all n ∈ Ni. We find that

e∗ =
s

Ni

[

Ni − 1

Ni

v1
i +

(

Ni − 1

Ni

−
1

Ni − 1

)

v2
i +

(

Ni − 3

Ni − 2
−

1

Ni − 1
−

1

Ni

)

v3
i

]

(32)

and in equilibrium each player n ∈ Ni expects the payoff

E[U i
n|Ni] =

1

Ni

− e∗. (33)

Note that this equilibrium is unique. As Ni−1
Ni

> Ni−1
Ni

− 1
Ni−1 > Ni−3

Ni−2 − 1
Ni−1 − 1

Ni
the

equilibrium exists for all vi if and only if s ≤ Ni

Ni−1 . In equilibrium contest 1 expects a strictly

higher (lower) number of participants than contest 2 if and only if ∆(1
2) > (<) 0 where ∆(q)

is as defined in (6). Hence in equilibrium contests will choose v1, v2 and v3 to maximize
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P s(v1, v2, v3) = α(s)v1 + β(s)v2 + γ(s)v3 where

α(s) = 1 + (N − 1)(
1

2
−

s

4
) − s

N−1
∑

m=2

(N−1
m )

m

(m + 1)2
(34)

β(s) = (N − 1)(
1

2
+

s

4
) − s

N−1
∑

m=2

(N−1
m )(

m

(m + 1)2
−

1

m(m + 1)
) (35)

γ(s) = −s

N−1
∑

m=2

(N−1
m )

1

m + 1
(
m − 2

m − 1
−

1

m
−

1

m + 1
). (36)

Note that β(s) > α(s) if and only if s > s̄ where s̄ ∈ (0, 1) is as defined in (17). Moreover
γ(s) > β(s) if and only if N ≥ 4 and s > ¯̄s where

¯̄s =
N − 1

2

(

N−1
∑

m=2

(N−1
m )

(m − 1)(m + 1)
−

N − 1

4

)−1

> s̄. (37)

For N ≥ 6 it holds that ¯̄s < 1. As P s is linear in its arguments it follows that the equilibrium

prize structure is (1, 0, . . . , 0) for s ∈ (0, s̄), (1
2 , 1

2 , 0, . . . , 0) for s ∈ (s̄, ¯̄s), and (1
3 , 1

3 , 1
3 , 0, . . . , 0)

for s ∈ (¯̄s, N
N−1 ).

Part 4: As s̄ is strictly decreasing in N with limN→∞ s̄ = 0, for any given s > 0,

there exists a N̄ such that s > s̄ for all N ≥ N̄ . Hence according to Proposition 3

for all N ≥ N̄ a winner–takes–all contest will attract strictly less participation than

a contest that awards two prizes. In equilibrium contests therefore have to award at

least two prizes if N ≥ N̄ .

Proof of Proposition 5

Consider the case where s → ∞. Suppose that v1 = (1, 0, . . . , 0) 6= v2. Define δ(q) ≡ E[Σe1]−
E[Σe2] where E[Σe1] and E[Σes] are given by (19) and (20) respectively. As m(v̄i(m) − vm

i )
is increasing in m, δ is strictly increasing in q. Moreover

δ(0) = −N(
1

N
− vN

2 ) ≤ 0 (38)

and

δ(
1

2
) =

1

2N

N
∑

m=2

(Nm)(1 − m[v̄2(m) − vm
2 ]) > 0. (39)
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Hence there exists a unique qe < 1
2 such that δ(qe) = 0. Suppose that all players enter contest

1 with probability qe so that expected aggregate effort is the same in each contest. Because

the prize money players expect to win in contest 1 is strictly larger than in contest 2, players

must strictly prefer contest 1 to contest 2, i.e. ∆(qe) > 0. As ∆(q) is strictly decreasing

this implies that in equilibrium q∗(v1, v2) > qe. Hence δ(q∗(v1, v2)) > 0 which means that in

equilibrium expected aggregate effort has to be higher in contest 1. Awarding a single first

prize is therefore a strictly dominant strategy when organizers aim to maximize aggregate

effort and in equilibrium contests will choose v∗1 = v∗2 = (1, 0, . . . , 0). As the increase in

participation and the resulting positive effect on aggregate effort caused by the award of

multiple prizes is strongest for s → ∞, multiple prizes are even less desirable for s < ∞. Our

result therefore holds for all s.
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Table 1: Ken Young’s prediction of Men’s winner (1999)

Date Race Name Distance (km) HA Prob HA WP PL CI PL WP
3/5/1999 IAAF World Indoor Champs (JPN) 3.0 80 1 796 1
3/5/1999 NCAA Indoor Champs (IN/USA) 5.0 70 2 398 1
3/6/1999 Gate River Run (FL/USA) 15.0 78 1 434 4
3/6/1999 NCAA Indoor Champs (IN/USA) 3.0 78 1 458 4
3/14/1999 Los Angeles (CA/USA) 42.2 54 2 650 4
3/27/1999 Azalea Trail (AL/USA) 10.0 97 1 432 1
4/11/1999 Cherry Blossom (DC/USA) 16.1 43 3 677 4
4/17/1999 Stramilano (ITA) 21.1 80 1 864 1
4/18/1999 Rotterdam (HOL) 42.2 71 2 709 1
4/19/1999 Boston (MA/USA) 42.2 37 2 727 4
4/25/1999 Sallie Mae (DC/USA) 10.0 66 2 728 1
5/2/1999 Pittsburgh (PA/USA) 42.2 47 1 355 4
5/16/1999 Volvo Midland Run (NJ/USA) 16.1 59 4 376 6
5/16/1999 Bay to Breakers (CA/USA) 12.0 50 3 676 1
5/31/1999 Bolder Boulder (CO/USA) 10.0 25 9 673 13
6/2/1999 NCAA Champs (ID/USA) 10.0 35 5 379 5
6/4/1999 NCAA Champs (ID/USA) 5.0 78 1 456 1
6/12/1999 Stockholm (SWE) 42.2 47 2 433 1
6/19/1999 Grandma’s (MN/USA) 42.2 40 2 392 2
6/27/1999 Fairfield (CT/USA) 21.1 60 6 572 4
7/4/1999 Peachtree (GA/USA) 10.0 68 1 831 2
7/4/1999 Golden Gala (ITA) 5000m 5.0 52 1 1003 1
7/17/1999 Crazy 8’s (TN/USA) 8.0 60 5 714 2
7/25/1999 Wharf to Wharf (CA/USA) 9.7 75 1 673 3
7/31/1999 Quad-Cities Bix (IA/USA) 11.3 88 1 767 1
8/15/1999 Falmouth (MA/USA) 11.3 72 2 845 2
8/21/1999 Parkersburg (WV/USA) 21.1 57 1 338 1
8/24/1999 IAAF World Champs (ESP) 10.0 74 2 960 1
8/28/1999 IAAF World Champs (ESP) 5.0 68 1 992 2
8/28/1999 IAAF World Champs (ESP) 42.2 7 5 699 18
9/3/1999 Ivo Van Damme (BEL) 10.0 42 13 843 12
9/26/1999 Berlin (GER) 42.2 57 1 586 1
10/24/1999 Chicago (IL/USA) 42.2 66 1 752 1
11/7/1999 New York City (NY/USA) 42.2 57 1 702 9
12/5/1999 California International (CA/USA) 42.2 12 8 378 11

Data kindly provided by Ken Young, Association of Road Racing Statisticians. For the handicapping (HA) evaluation,
“HA Prob” denotes the probability with which the predicted winner was expected to win and “HA WP” reports the
placing he actually obtained. Using a Point Level (PL) system the average rating for the five highest ranked runners
in the race was compared to the average rating for the ten highest ranked runners in the world at the time of the race
in order to construct the competition index (CI). The higher the index the better the quality of the field. The column
“PL WP” reports the actual placing obtained by the highest ranked runner.
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Table 2: Descriptive statistics

Short (Distance ≤ 10km)
Variable Obs Mean Std. Dev. Min Max

Rain (cm) 175 7.29 3.19 0 17
Temperature (oC) 175 21.44 6.65 3 33

Championship 175 0.07 0.26 0 1
Total Prize (’0000 US $) 175 0.30 0.64 0.01 6.00

Size (’0000) 175 0.34 0.73 0.00 5.50
Top Ranked Runners 154 0.60 1.82 0 15

Riegel 2003 (Sec) 175 1,821.77 96.91 1,647.00 2,276.75
Trail 175 0.01 0.11 0 1

Medium (10km < Distance < 42km)
Variable Obs Mean Std. Dev. Min Max

Rain (cm) 97 7.06 2.92 0 16
Temperature (oC) 97 20.27 6.00 0 32

Championship 97 0.12 0.33 0 1
Total Prize (’0000 US $) 97 0.57 1.00 0.02 7.00

Size (’0000) 97 0.53 1.07 0.01 8.00
Top Ranked Runners 90 1.15 2.94 0 17

Riegel 2003 (Sec) 97 1,849.14 203.44 1,653.62 3,056.75
Trail 97 0.05 0.22 0 1

Long (Distance ≥ 42km)
Variable Obs Mean Std. Dev. Min Max

Rain (cm) 96 6.49 3.25 0 16
Temperature (oC) 96 18.44 5.13 9 33

Championship 96 0.11 0.32 0 1
Total Prize (’0000 US $) 96 2.32 4.69 0.02 27.00

Size (’0000) 96 0.63 0.87 0.01 4.60
Top Ranked Runners 88 1.32 2.54 0 11

Riegel 2003 (sec) 96 1,883.97 180.92 1,629.07 2,628.47
Trail 96 0.03 0.17 0 1

Notes: Means and standard deviations for each race distance category, “Short”, “Medium” and “Long”, respectively.
“Championship” refers to whether or not the race held a championship title. “Total Prize” is the total amount of the
prize budget available to senior men (all values are expressed in 10,000 (real) US dollars evaluated at monthly historical
exchange rate for 2004-2005). “Size” refers to the total number of contestants in the race measured in units of 10,000.
“Top Ranked Runners” is the number of participants who were included in the ranking of the fastest performances in
2003. “Riegel 2003” calculates the 10km equivalent race finishing times. “Trail” refers to whether the race took place
on a cross country or mountain course.
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Table 3: Prize structures without/with controls

PANEL A Measures of Prize Structure Steepness
[1] [2] [3] [4] [5] [6] [7] [8]

Dep. Var. C. I. 1:2 1:3 1:Total C. I. 1:2 1:3 1:Total
Distance(km) 0.0008 0.0008 0.0007 0.0006 0.0008 0.0009 0.0007 0.0006

[0.0003]** [0.0002]** [0.0002]** [0.0004] [0.0003]* [0.0003]** [0.0003]** [0.0004]
Champ. -0.001 -0.0044 -0.0052 -0.0236

[0.0159] [0.0122] [0.0132] [0.0207]
Prize(’0000$) -0.0013 -0.0012 -0.0016 -0.0030

[0.0012] [0.0009] [0.0010] [0.0015]
Size(’0000) 0.0024 0.0065 0.0031 -0.0051

[0.0059] [0.0046] [0.0049] [0.0077]
Riegel 2003 0.0001 0.0001 0.0001 0.0002

[0.0000] [0.0000] [0.0000]† [0.0001]**
Trail -0.0022 0.0013 -0.0316 -0.0811

[0.0356] [0.0274] [0.0296] [0.0463]†
Constant 0.394 0.6241 0.7321 0.4511 0.2806 0.607 0.6248 0.0502

[0.0075]** [0.0058]** [0.0063]** [0.0102]** [0.0715]** [0.0550]** [0.0594]** [0.0930]**
Obs. 368 368 368 368 368 368 368 368

PANEL B Measures of Prize Structure Steepness
[1] [2] [3] [4] [5] [6] [7] [8]

Dep. Var. C. I. 1:2 1:3 1:Total C. I. 1:2 1:3 1:Total
Medium 0.0119 0.0115 0.0112 0.0162 0.0103 0.0105 0.011 0.0164

[0.0113] [0.0086] [0.0094] [0.0153] [0.0114] [0.0088] [0.0095] [0.0148]
Long 0.0316 0.0299 0.025 0.0245 0.0305 0.0303 0.0255 0.0233

[0.0113]** [0.0087]** [0.0094]** [0.0153] [0.0122]* [0.0094]** [0.0101]** [0.0158]
Champ. -0.0014 -0.0047 -0.0056 -0.0244

[0.0159] [0.0123] [0.0132] [0.0207]
Prize(’0000$) -0.0011 -0.0009 -0.0014 -0.0027

[0.0011] [0.0009] [0.0009] [0.0015]
Size(’0000) 0.0019 0.0061 0.0026 -0.0058

[0.0060] [0.0046] [0.0050] [0.0078]
Riegel 2003 0.0001 0.0001 0.0001 0.0002

[0.0000]† [0.0000] [0.0000]† [0.0001]**
Trail -0.0039 -0.0012 -0.0342 -0.0847

[0.0357] [0.0275] [0.0297] [0.0464]†
Constant 0.3989 0.6292 0.7358 0.4531 0.2789 0.6029 0.6209 0.0461

[0.0067]** [0.0052]** [0.0056]** [0.0091]** [0.0716]** [0.0551]** [0.0595]** [0.0930]
Obs. 368 368 368 368 368 368 368 368

Notes: Standard errors are in parentheses. (†), (*) and (**) represent significance at the 90, 95 and 99 percent level,
respectively. The dependent variables refer to various measures of prize structure steepness (concentration index (C.
I.); ratio between first and second prize (1:2); ratio between first and third prize (1:3); and ratio between first and total
prize (1:Total)). For a description of the other variables see Table 2.
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Table 4: Prize structure with restrictions on total prize budget

Dependent Variable Concentration Index (C. I.)
[1] [2] [3] [4]

Restrictions none TP<90% TP>10% 10%<TP<90%
Distance 0.0008 0.0011 0.0010 0.0015

[0.0003]* [0.0004]** [0.0003]** [0.0004]**
Championship -0.001 -0.0248 -0.0018 -0.024

[0.0159] [0.0183] [0.0158] [0.0180]
Total Prize(’0000$) -0.0013 -0.0184 -0.0017 -0.0259

[0.0012] [0.0139] [0.0011] 0.0137
Size(’0000) 0.0024 0.0076 0.0019 0.0082

[0.0059] [0.0075] [0.0058] [0.0072]
Riegel 2003 0.0001 0.0001 0.0001 0.0001

[0.0000] [0.0000] [0.0000] [0.0001]
Trail -0.0022 0.0015 0.024 0.0429

[0.0356] [0.0387] [0.0388] [0.0432]
Constant 0.2806 0.2888 0.3421 0.3939

[0.0715]** [0.0837]** [0.0786]** [0.0937]**
Observations 368 331 332 295

Notes: Standard errors are in parentheses. (†), (*) and (**) represent significance at the 90, 95 and 99 percent level,
respectively. Column (1) includes all races. In column (2) we exclude races with a total prize budget amongst the
top 10%. In column (3) we exclude races with a total prize budget (TP) amongst the bottom 10%. In column (4) we
exclude races with a total prize budget either amongst the bottom 10% or above the top 10%

45



Table 5: Participation of Top Ranked Runners

Dependent Variable Top Ranked Runners
[1] [2] [3]

Distance Long Medium Short
Concentration Index 4.61531 -0.86782 -0.76312

[1.65795]** [2.41828] [2.43981]
Rain 0.04489 0.05635 -0.05065

[0.06056] [0.07855] [0.04546]
Temperature 0.04256 0.00113 -0.03806

[0.03716] [0.03476] [0.02239]†
Total Prize (’0000$) 0.3300 1.900 0.7600

[0.1000]** [0.3000]** [0.3000]**
Size (’0000) 0.6300 0.3600 -0.0200

[0.3000]† [0.2000]† [0.2000]
Riegel 2003 0.00001 -0.00153 -0.00162

[0.00157] [0.00199] [0.00164]
Trail -2.68802 1.86795 0.32307

[1.94804] [1.79707] [1.54183]
Constant -2.92514 2.51767 4.82139

[3.00638] [3.90509] [2.89613]†
Observations 88 90 154

Notes: Standard errors are in parentheses. (†), (*) and (**) represent significance at the 90, 95 and 99 percent level,
respectively. The dependent variable, “Top Ranked Runners”, counts the number of participating runners who were
amongst those with the best finishing performances in 2003.
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Table 6: Winning Performance

Dependent Variable Riegel 2004
[1] [2] [3] [4]

Total Prize (’0000$) -15.4810 -4.7410
[4.4200]** [4.3600]

Concentration Index -0.4651 -85.7087
[114.5542] [106.8533]

Short 1,903.42 805.0429 1,727.53 921.2702
[67.8566]** [164.7526]** [106.8274]** [182.4072]**

Medium 1,912.44 806.5594 1,954.00 1,028.11
[68.6082]** [165.9799]** [96.1924]** [196.3595]**

Long 1,943.06 786.3585 1,932.21 999.972
[68.9412]** [172.6224]** [81.6556]** [191.3044]**

Riegel 2003 0.6214 0.5043
[0.0861]** [0.0944]**

Total Prize(’0000$)*Short -65.5810 -41.1420
[22.2120]** [21.7680]†

Total Prize(’0000$)*Medium -107.4940 -57.8030
[20.7550]** [21.9550]**

Total Prize(’0000$)*Long -12.1120 -4.8310
[4.3120]** [4.3500]

C.I.*Short 405.1186 140.3977
[236.3836]† [231.8450]

C.I.*Medium -55.8521 -79.5659
[205.3986] [196.8460]

C.I.*Long -61.2985 -110.4742
[154.0820] [147.9156]

Rain -2.71 -4.1102 -2.6291 -3.7594
[3.4507] [3.2048] [3.3307] [3.1982]

Temperature 0.3737 0.6999 1.4284 1.2587
[1.7493] [1.6224] [1.6935] [1.6229]

Size(’0000) -27.2970 -17.2510 -14.2620 -11.2400
[12.8240]* [11.9700] [12.6400] [12.1240]

Trail 564.144 220.566 685.9003 353.7795
[83.8881]** [91.1957]* [85.7670]** [103.0575]**

Observations 332 332 332 332

Notes: Standard errors are in parentheses. (†), (*) and (**) represent significance at the 90, 95 and 99 percent level,
respectively. The dependent variable, “Riegel 2004”, is measured in seconds and calculates the 10km equivalent race
finishing times. In order to compare all distance categories, the excluded category is the constant.
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