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Abstract

When players compete repeatedly, prizes won in earlier contests may improve
the players’ abilities in later contests. This paper determines the allocation of prizes
within and across contests that maximizes the (weighted) sum of aggregate efforts.
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1. Introduction

In many social and economic settings, e.g. procurement or R&D contests, labor tour-
naments, or sports leagues, agents compete with each other repeatedly and resources
obtained in an earlier contest may be used to improve the agents’ abilities in later con-
tests. For example, between 1985 and 1990, the US Air Force conducted a series of
annual procurement contests between Pratt & Whitney and General Electric for a total
of 2000 fighter jet engines. The first contest awarded the procurement of 160 engines to
be purchased in 1985 and both companies used the resulting revenues of $800 million to
strengthen their R&D departments.

This paper considers the optimal allocation of prizes within and across contests for
an organizer interested in the maximization of the (weighted) sum of aggregate efforts.
It highlights a trade–off between incentives and competitive balance. The provision of
incentives in earlier contests via the implementation of large prize spreads leads to com-
petitive imbalances and hence a reduction in incentives in later contests. This trade–off
seems to be recognized in practice. In 1984 the US Air Force carried out extensive engine
life–cycle cost analyses concluding that General Electric’s costs were lower than Pratt and
Whitney’s. Nevertheless, 25% of the engines purchased in 1985 were awarded to Pratt
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and Whitney’s. The implementation of a split award secured a level of competition for
which this procurement contest became known as the “The Great Engine War”.

The model provides a new rationale for the wide spread occurrence of multiple prizes.
It complements earlier work which has explained the use of multiple prizes by the contes-
tants’ risk aversion (Krishna and Morgan, 1998), the convexity of effort costs (Moldovanu
and Sela, 2001), or the need to attract participation (Azmat and Möller, 2009). In addi-
tion, the model offers comparative statics results that are readily testable.

While contest design has attracted considerable interest in the economic literature,
most papers focus on static settings and only a few consider dynamic aspects.1 Some
papers study the design of elimination tournaments (Rosen 1986, Gradstein and Konrad,
1999, Moldovanu and Sela, 2006). Others consider settings in which contestants exert
effort various times and prizes are allocated either in dependence of aggregate efforts
(Yildirim, 2005) or as a function of the contest outcomes at each stage (Gershkov and
Perry, 2009, Konrad and Kovenock, 2009). The present paper differs from both by fo-
cusing on a setting where the set of contestants remains constant and the winner of each
contest/stage is determined solely by the contestants’ efforts in that stage. It adds to the
literature on dynamic contest design by allowing for a dependence of players’ abilities on
past performance.

2. The model

Two risk neutral players i ∈ {1, 2} compete in two successive contests n ∈ {1, 2}. In
each contest, players choose individual efforts non–cooperatively and simultaneously and
the winner is determined by Tullock’s (1980) parameterized contest success function. In
particular, if in contest n, player i exerts effort eni and player j exerts effort enj , then

player i wins contest n with probability pni(eni, enj) =
esni

es
ni
+es

nj

. The parameter s ∈ (0, 1]

measures the influence of the players’ efforts on the contest’s outcome.2 Both contests are
organized by a single contest designer endowed with a total prize budget normalized to 1.
Denote by vn the sum of the prizes awarded in contest n, and let wn ∈ [1

2
, 1] be the share

that is given to the winner. The players’ aggregate effort in contest n is En = en1 + en2.
The contest designer maximizes the (weighted) sum of efforts E = γE1+(1−γ)E2 subject
to his budget constraint v1 + v2 ≤ 1.

Players have linear costs of effort. In contest 1 the players’ marginal cost of effort is
normalized to 1.3 Players do not derive direct utility from the prizes awarded in contest
1. Instead, these prizes lower the players’ marginal costs of effort in contest 2. A player
who obtains the prize v in contest 1 has (constant) marginal cost of effort c(v) ≤ 1 in
contest 2. Following the contest literature, we interpret a(v) = 1

c(v)
as the player’s ability.

Note that if a(.) was concave (convex) the players’ average ability in contest 2 would

1For an extensive overview of this literature see Konrad (2009).
2The assumption that s is restricted from above is standard and guarantees the existence of a unique

equilibrium (Szidarovszky and Okuguchi, 1997).
3Players are assumed to be identical ex ante in order to rule out heterogeneity as the reason to award

multiple prizes (Szymanski and Valletti, 2005).
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be maximized by awarding two equal prizes (a single prize) in contest 1. In order to
focus on the trade–off between incentives and competitive balance and to make the model
tractable, we assume that a(.) is linearly increasing, i.e. a(v) = 1+αv with α > 0. Players
discount second period payoffs with discount factor δ ∈ (0, 1).

3. Competition

The solution of a Tullock contest can be derived from first order conditions and is standard
in the literature. In the unique equilibrium of a contest with first prize V1 and second prize

V2, two players with marginal effort costs ci, cj > 0 exert efforts e∗i = sV1−V2

ci

(
ci
cj

)s

[1+(
ci
cj

)s]2
and

obtain the payoffs π∗

i = V2 + (V1 − V2)
1+(1−s)(

ci
cj

)s

[1+(
ci
cj

)s]2
. In contest 2 the marginal cost of effort

of the winner and the loser of contest 1 are ci =
1

a(w1v1)
and cj =

1
a((1−w1)v1)

respectively

and the prize spread is given by V1 − V2 = v2(2w2 − 1). Aggregate effort in contest 2
therefore becomes:

E2 = 2sv2(2w2 − 1)
āhs

(1 + hs)2
. (1)

It depends on the players’ level of heterogeneity, denoted as h ≡ a(w1v1)
a((1−w1)v1)

≥ 1, and their

average ability, given by ā ≡ 1
2
[a(w1v1) + a((1− w1)v1)] = 1 + α

2
v1.

In contest 1, c1 = c2 = 1 and V1 and V2 are given by the discounted (expected) payoffs
that the winner and the loser of contest 1 will obtain in contest 2:

V1 − V2 = δv2(2w2 − 1)

[

1 + (1− s)( 1
h
)s

[1 + ( 1
h
)s]2

−
1 + (1− s)hs

[1 + hs]2

]

= δv2(2w2 − 1)
hs − 1

hs + 1
. (2)

Aggregate effort in contest 1 becomes:

E1 =
s

2
δv2(2w2 − 1)

hs − 1

hs + 1
. (3)

In accordance with the intuition mentioned in the Introduction, E1 is increasing in the
players’ heterogeneity h whereas E2 is decreasing. Prizes have a positive, although indirect
effect on present incentives. Contestants exert effort in contest 1 to become stronger
competitors in contest 2. However, prizes also have a negative effect on future incentives.
The loser of contest 1 becomes demotivated by the comparative advantage of his rival in
contest 2. The winner of contest 1 anticipates this and provides less effort himself.4

4. Contest design

In both contests aggregate effort is strictly increasing in v2 and w2. It is therefore optimal
for the organizer to set w2 = 1 and v2 = 1−v1, i.e. contest 2 should be a winner–takes–all

4The insight that ability differences are detrimental for incentives can be traced back to Lazear and
Rosen (1981).
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contest and award all remaining prize money. The organizer’s problem simplifies to:

max
v1∈[0,1],w1∈[

1

2
,1]
s(1− v1)

{

γδ

2

hs − 1

hs + 1
+ 2(1− γ)

āhs

(1 + hs)2

}

. (4)

We consider this problem in two steps. We first focus on the allocation of prizes within

contest 1 by deriving the optimal winner’s share w∗

1(v1) for a given v1. We then consider
the optimal allocation of prizes across the two contests by deriving the optimal v∗1.

Proposition 1 If v1 ≤ v̄1, contest 1 should be winner–takes–all, i.e. w∗

1(v1) = 1. If

v1 > v̄1, awarding two prizes is optimal and the winner’s share w∗

1(v1) ∈ (1
2
, 1) is strictly

increasing in γ and δ but strictly decreasing in v1, α, and s. v̄1 is strictly increasing in δ

and γ, but strictly decreasing in s and α. v̄1 ∈ (0, 1) if α > ᾱ(γ, δ, s) and v̄1 = 1 otherwise.

Proposition 1 is interesting in its own right since it applies to the case where the organizer
is able to determine the allocation of prizes within each contest but the prize budget of
each contest is fixed for exogenous reasons. In order to gain intuition for the comparative
statics results it is useful to note from the proof of Proposition 1 that the organizer chooses
w∗

1(v1) to induce an optimal degree of heterogeneity given by

h∗ ≡

(

ā+ γδ

2(1−γ)

ā− γδ

2(1−γ)

)

1

s

. (5)

An increase in the winner’s share, w1, increases the players’ heterogeneity. This strength-
ens incentives in contest 1 at the cost of reducing incentives in contest 2. As the weight
attached to first period efforts, γ, becomes larger, the organizer should therefore award a
larger share to the winner. The effect of an increase in the players’ discount factor, δ, is
as follows. In contest 1 players exert effort in order to obtain a comparative advantage
in contest 2. An increase in δ makes such a comparative advantage more valuable and
players more responsive to first period incentives. As a consequence, the organizer should
implement a larger prize spread in contest 1.

An increase in the total prize, v1, awarded in contest 1 has two effects. First, it in-
creases the players’ average ability, ā, and hence the level of effort in contest 2. Inducing
heterogeneity becomes more costly for the organizer since it leads to a stronger reduction
in second period efforts. As a consequence, the optimal degree of heterogeneity h∗ de-
creases. Second, as v1 increases, a lower w1 is required to achieve the required degree of
heterogeneity h∗. A similar reasoning applies to changes in the parameter α measuring
the effectiveness with which prizes translate into ability improvements.

Finally, an increase in the Tullock parameter s makes contest outcomes more respon-
sive to changes in efforts. Competitive imbalances weigh more heavily and heterogeneity
has a more detrimental effect on second period incentives. As a result, the optimal degree
of heterogeneity and hence the share awarded to the winner decreases.
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Note that it is never optimal to award two equal prizes in contest 1, i.e. w∗

1 6= 1
2
. For

w1 = 1
2
, increasing w1 has a first order (positive) effect on incentives in contest 1, but

only a second order (negative) effect on incentives in contest 2.5

The following proposition shows that these results remain unchanged when the orga-
nizer is able to determine the allocation of his prize budget across the two contests:

Proposition 2 If α is sufficiently large, the optimal prize allocation (v∗1, w
∗

1, v
∗

2, w
∗

2) is

such that v∗1 ∈ (0, 1), w∗

1 ∈ (1
2
, 1), v∗2 = 1− v∗1, and w∗

2 = 1. v∗1 is independent of s, strictly

increasing in α and strictly decreasing in γ and δ. w∗

1 is strictly increasing in γ and δ but

strictly decreasing in s and α.

Proposition 2 focuses on the more interesting case where it is optimal for the organizer to
award multiple prizes in contest 1. When α is small, the organizer will choose a v∗1 < v̄1
and implement a winner–takes–all contest by setting w∗

1 = 1. For large enough α, the
organizer is able to resolve the trade–off between first period incentives and second period
competitive imbalance completely, by choosing the optimal degree of heterogeneity h∗ via
the selection of the optimal winner’s share w∗

1(v1). What remains for the choice of v1, is a
trade–off between ability improvement and incentives. A higher v1 increases the players’
(average) ability in contest 2 but reduces the amount 1− v1 that is left for the provision
of incentives.

The intuition for the comparative statics with respect to v∗1 are as follows. As γ

decreases and first period efforts become less important, the organizer will implement
a more balanced prize allocation in contest 1, i.e. w∗

1(v1) decreases for a given v1. A
balanced prize allocation allows the organizer to improve the players’ abilities without
the introduction of competitive imbalances. As a consequence, a larger share of the
organizer’s prize budget will be allocated to the first contest. A similar effect results from
a reduction in the players’ discount factor. It is interesting to consider the limiting case
γ → 0 in which the organizer is only concerned about the players’ efforts in contest 2. In
this case, the organizer avoids the introduction of any comparative advantage by letting
w∗

1(v1) →
1
2
for any v1. He chooses v1 to maximize E = s

2
(1− v1)(1+

1
2
αv1). The solution

is given by limγ→0 v
∗

1 = 1
2
− 1

2α
. The same solution is obtained for δ → 0, i.e. when players

are myopic. It serves as an upper bound on the solution v∗1 for the case where γ, δ > 0.
While the positive dependence of v∗1 on α is straight forward, its independence of s

deserves some discussion. An increase in s has two effects. It increases the value of ability
improvements since efforts become more dependent on ability. It also makes players react
more strongly to the provision of incentives. In the present setting it does not make a
difference whether players are motivated via the reduction of their effort costs, or through
the award of prize money. As a consequence, v∗1 is independent of s.

5This is similar to a result obtained by Meyer (1992) in the context of a repeated labor tournament
where heterogeneity is induced by biasing the second contest in favor of the winner of the first.
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5. Concluding remark

The present analysis assumes that prizes improve the players’ abilities in future contests
but offer no immediate benefits. For example, scientists winning a research grant obtain
better professional capabilities but often derive no direct income from such an award.
In an extension, contests could offer monetary rewards and players could determine the
amount to be invested into future abilities. The analysis of investment decisions in a
contest setting requires a clear distinction between efforts and investments as in Münster
(2007). It is an interesting topic that is left for future research.

Appendix

Proof of Proposition 1

Defining x ≡ hs ∈ [1, a(v1)
s] and η ≡ γδ

2(1−γ)
we have

dE

dx
=

2s(1− γ)(1− v1)

(x+ 1)2
g(x) where g(x) ≡ η − ā

x− 1

x+ 1
. (6)

Note that g(1) = η > 0 and dg

dx
= − 2ā

(x+1)2
< 0. If g(a(v1)

s) ≥ 0 then E is increasing in

the entire range. Since x and ā are strictly increasing in v1 it holds that dg

dv1
< 0. Hence

there exists a v̄1 > 0 such that g(a(v1)
s) ≥ 0 if and only if v1 ≤ v̄1. The threshold v̄1

is the unique solution to g(a(v1)
s) = 0. Since dx

ds
> 0, dg

dη
> 0, and dg

dα
< 0, the Implicit

Function Theorem implies that v̄1 is strictly increasing in δ and γ, but strictly decreasing
in s and α. v̄1 < 1 if g(a(1)s) < 0 which is equivalent to α > ᾱ(γ, δ, s) since g(a(1)s) is
strictly decreasing in α. For v1 ≤ v̄1, E is maximized by setting w∗

1 = 1. For v1 > v̄1
there exists a unique x∗ = ā+η

ā−η
∈ (1, a(v1)

s) such that g(x∗) = 0 and E is maximized by

choosing w∗

1 ∈ (1
2
, 1). The comparative statics with respect to w∗

1 follow from dhs

dw1

> 0,
dhs

dv1
> 0, dhs

ds
> 0, dhs

dα
= shs−1v1(2w1−1)

(1+αv1(1−w1))2
> 0, d

dη
[ ā+η

ā−η
] = 2ā

(ā−η)2
> 0, d

dα
[ ā+η

ā−η
] = − ηv1

(ā−η)2
< 0,

and d
dv1

[ ā+η

ā−η
] = − ηα

(ā−η)2
< 0.

Proof of Proposition 2

For v1 < v̄1, w
∗

1(v1) = 1 and the organizer’s objective function becomes

E(v1, w
∗

1(v1)) = s(1− v1)

{

γδ

2

a(v1)
s − 1

a(v1)s + 1
+ 2(1− γ)

āa(v1)
s

(1 + a(v1)s)2

}

. (7)

Since the constraint w∗

1(v1) ≤ 1 is binding, it follows from the proof of Proposition 1,
that the term in parenthesis is increasing in a(v1) = 1 + αv1. It is also increasing in
ā = 1+ 1

2
αv1. Both increases are stronger when α is large. Since v̄1 is decreasing in α, we

can therefore choose α sufficiently large, so that E(v1, w
∗

1(v1)) is increasing in v1 for all
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v1 ≤ v̄1. It then becomes optimal to choose a v∗1 such that v∗1 > v̄1. For v1 > v̄1, w
∗

1(v1)
solves hs = ā+η

ā−η
. Substitution into (4) gives

E(v1, w
∗

1(v1)) = (1− γ)s
1− v1

2 + αv1
[η2 + (1 +

1

2
αv1)

2]. (8)

We have dE
dv1

= s 1−γ

(2+αv1)2
q(v1) where

q(v1) = 2α(1 +
1

2
αv1)

2(1− v1)− (2 + α)[η2 + (1 + η)2]. (9)

Note that q(1) < 0. Moreover, when α is sufficiently large, q(v̄1) > 0. Since

∂q

∂v1
= 2α(1 +

1

2
αv1)(α− 1−

3

2
αv1) (10)

the function q(.) is either strictly decreasing in (v̄1, 1) or it is first increasing and then
decreasing. Hence q(.) crosses zero exactly once and from above, i.e. there exists a unique
v∗1 ∈ (v̄1, 1) at which E is maximized. The comparative statics for v∗1 follow from ∂q

∂η
< 0,

∂q

∂s
= 0, and ∂q

∂α
> 0. The comparative statics for w∗

1 follow from the comparative statics
of v∗1 and Proposition 1.
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