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Abstract

This paper studies informational partnerships in a repeated prisoner’s di-
lemma with random matching. Assuming that players observe the play within
but not across partnerships, we find the surprising result that the relation bet-
ween the observability of actions and the sustainability of cooperation is non–
monotonic. Increasing partnerships beyond a certain optimal size hardens co-
operation although it improves observability.
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1. Introduction

The sustainability of cooperation in a two–player repeated prisoner’s dilemma is a well
established fact. Fudenberg and Maskin (1986) were the first to prove a Folk Theorem
for the case of perfectly observable actions. The extension of this result to the case
of imperfectly observable actions has attracted considerable attention in recent years
(e.g. Piccione (2002) and references therein). If the prisoner’s dilemma is played in a
population of uniformly randomly matched players further informational imperfections
might exist. Kandori (1992) has considered two extreme cases of observability. For a
fully informed population in which every player observes the identity and actions of all
other players Kandori proves a Folk Theorem. Kandori also shows that cooperation can
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be sustained in a fully uninformed population in which players only observe the actions
of their stage game opponents and the players’ identities are unobserved. This paper
extends Kandori’s analysis to the intermediate case of partially informed populations
in order to study the relationship between the sustainability of cooperation and the
amount of available information in more detail. We assume that the population is
partitioned into partnerships and that there is perfect observability within but not
across partnerships. Surprisingly, it turns out that more information not necessarily
implies that cooperation is easier to sustain. Increasing partnerships beyond a certain
optimal size hardens cooperation although it improves observability.

So far the literature has found that additional information facilitates cooperation.
Okuno-Fujiwara and Postlewaite (1995) for example assume that players possess ob-
servable labels like reputation or membership. They find that the introduction of this
additional information improves cooperation. In a more applied setting Greif (1993)
shows how the introduction of trade coalitions with specific information transmission
mechanisms facilitated cooperation between 11th–century traders and their oversea
agents. The present paper is the first to find a non–monotonistic relation between the
amount of available information and the sustainability of cooperation.

Other papers have shown that cooperation in a population of players can be sus-
tainable by departing from the assumption of uniform random matching. Harrington
(1995) assumes that some players meet more frequently than others and Matsushima
(1990) and Ghosh and Ray (1996) consider models in which opponents are chosen en-
dogenously. Although these papers have explained the sustainability of cooperation
they have failed to consider its dependence on the amount of available information.

The remainder is organized as follows. Section 2 presents the basic prisoner’s di-
lemma framework and introduces partnerships as a particular form of informational
structure. Section 3 shows how cooperation can be sustained in such a partially infor-
med population. Section 4 discusses the dependence of the sustainability of cooperation
on the partnership–size and Section 5 concludes.

2. The model

Consider an even number N ≥ 4 of perfectly rational players. Time is discrete and
periods are indexed by t = 0, . . . ,∞. In each period players get uniformly randomly
matched to play a 2-player prisoner’s dilemma. After the prisoner’s dilemmas have
been played in period t and payoffs have been realized the pairs of players separate
and random matching determines the new pairs for period t + 1. Players discount
future utility by a homogeneous discount factor δ ∈ (0, 1). The one-period payoffs of
the prisoner’s dilemma are defined in Figure 1. They are normalized by setting the
efficient payoff equal to 1 and the Nash payoff equal to zero. Payoffs are therefore
completely characterized by two parameters; the gain from defecting, G > 0 and the
loss from being defected, L > 0. We suppose that the population is partitioned into
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C D
C 1,1 −L,1 + G

D 1 + G,−L 0,0

Figure 1: Payoff matrix of the normalized prisoner’s dilemma

partnerships of n players, where n is a divisor of N such that 2 ≤ n ≤ N

2
. From the

viewpoint of each player the population is therefore devided into two groups, the group
of his partners and the group of non–partners which we also call strangers. We assume
that in addition to the actions of their stage game opponents, players only observe
the actions in matches amongst their partners. Players can distinguish partners from
strangers but identify only partners. Note that the assumption that partnerships are of
equal size allows us to express the observability of players’ actions by a single parameter,
n. It also implies that, as in Kandori (1992), players are homogeneous in the amount of
information they possess. As common in this literature, I assume that players cannot
communicate with each other.

3. Sustaining cooperation

Consider the following strategy σ∗ which combines undirected punishments of partners
with a contagious punishment of strangers. Suppose that in period t = 0 players
begin by cooperating. In period t > 0 a player’s action depends on the identity of his
opponent. If his opponent is a partner he cooperates if there has been no defection
within his partnership so far, otherwise, he defects. If his opponent is a stranger
he cooperates if no stranger has defected against him so far, otherwise, he defects.
Note that σ∗ separates behaviour with partners from behaviour with strangers. More
specifically, the actions it prescribes against partners are independent of the history of
play with strangers and vice versa. This property is intuitively appealing. We will say
that a strategy is separable if it satisfies this property.

Our first result extends the findings of Kandori (1992) to the case where observabi-
lity is neither perfect nor completely imperfect. It shows that σ∗ sustains cooperation
throughout the entire population and that no other separable strategy can do better.

Proposition 1 There exists a δ∗(n) < 1 such that for all δ ≥ δ∗(n), σ∗ implements

full cooperation as sequential equilibrium for sufficiently large L. For all δ < δ∗(n), full

cooperation cannot be sustained as a sequential equilibrium by any separable strategy.

Proof. Consider player i ∈ N . By the Principle of Dynamic Programming (Abreu
(1988)) one only has to check that one–shot deviations from σ∗ are unprofitable after
any history. If there was no defection amongst i’s partners so far, a deviation against
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a partner is unprofitable if and only if

1 +
n − 1

N − 1

∞∑

τ=1

δτ · 1 ≥ 1 + G ⇔ δ ≥
G

n−1

N−1
+ G

≡ δp. (1)

If there was a defection in player i’s partnership before, playing D is optimal for i as
his action does not influence the future actions of any other player. Note that amongst
all separable strategies, σ∗ minimizes player i’s payoff from deviating against a partner.
It follows that for all δ < δp cooperation amongst partners cannot be sustained. Now
consider i’s incentives to deviate against a stranger. If no stranger has defected against
i so far, to be consistent with equilibrium, player i must believe that every other player
still cooperates with strangers. Let pτ and sτ denote the (expected) proportion of i’s
partners and non–partners respectively who would defect against strangers τ periods
after a deviation of i. It holds that s1 = 1

N−n
and p1 = 1

n
and for τ > 1 this contagious

process develops in the following way: sτ = sτ−1 +(1−sτ−1)(
N−2n

N−1
sτ−1 + n

N−1
pτ−1) and

pτ = pτ−1 + (1 − pτ−1)
N−n

N−1
sτ−1. Player i has no incentive to deviate if and only if

1 +
N − n

N − 1

∞∑

τ=1

δτ · 1 ≥ 1 + G +
N − n

N − 1

∞∑

τ=1

δτ (1 + G)(1 − sτ ) (2)

For δ close to one, the left hand side tends to infinity whereas the right hand side is
bounded from above.1 Hence, there exists a δs < 1 such that player i has no incentive
to deviate if and only if δ ≥ δs. If a stranger has defected against i before, then to
be consistent with equilibrium player i has to believe that the probability of meeting
a defecting stranger in the future is strictly positive. His incentive not to deviate from
the punishment prescribed by σ∗ then gives an upper bound on the discount factor.
This is because by deviating an immediate loss (G for meeting a cooperating stranger,
L for meeting a defecting stranger) is occurred which has to be compared to a future
gain (depending on G, but not on L) from slowing down the contagion. For any given
G one can therefore choose L large enough2 such that for every consistent belief of
player i the upper bound on δ is greater than 1 and hence not binding. Note that
amongst all separable strategies σ∗ transmits the information that a defection amongst
strangers has occurred as fast as possible. The only way to speed up its transmission
would be to answer a deviation of a stranger by a change in the behaviour with partners.
Amongst all separable strategies, σ∗ therefore minimizes player i’s payoff from deviating
against a stranger. It follows that for all δ < δs cooperation amongst strangers cannot

1As limτ→∞
1−sτ

1−sτ−1

= 1 − N−n

N−1
< 1 the Ratio Test criterion implies that

∑∞
τ=1

(1 − sτ ) is finite.
2For a completely uninformed population Ellison (1994) shows that cooperation can be sustained

as sequential equilibrium for sufficiently patient players for every value of L. His equilibrium strategies
make the contagious punishment less severe by spreading it out over time. Our aim is to find the
smallest discount factor for which cooperation can be sustained for some values of L.
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be sustained by a separable strategy. We have thus shown that σ∗ is a sequential
equilibrium for all δ ≥ δ∗(n) ≡ max(δp, δs) if L is sufficiently large and that full
cooperation cannot be sustained by a separable strategy for δ < δ∗(n).

Note that answering a defection of a stranger by defecting forever against all stran-
gers has two effects; the direct punishment of the deviator if he is met again, and the
transmission of the information that a defection amongst strangers has occurred throu-
ghout the population. It is the dependence of the speed of this information transmission
on the partnership–size which drives our next result.

4. Optimal partnership–size

Cooperation is easiest to sustain in a fully informed population. In a fully uninformed
population cooperation is harder to enforce as the observational restrictions imply less
effective punishments. In other words, in a fully uninformed population players have to
be more patient in order to make full cooperation sustainable in equilibrium. One might
therefore think that for partially informed populations there is a monotone relationship
between the amount of available information and the sustainability of cooperation.
Surprisingly, our next result shows that this is not the case. We show that for generic
parameter values the partnership–size n∗ which minimizes δ∗(n) is strictly smaller than
N

2
. The threshold δ∗(n) is increasing between n∗ and N

2
. This means that cooperation

becomes harder to enforce although information improves. The size n∗ is optimal in
the sense that it requires players to be least patient for full cooperation to become an
equilibrium.

Proposition 2 For generic parameter values δ∗(n) is minimized at n∗ with 2 < n∗ <
N

2
. The partnership–size n∗ optimally promotes cooperation in a partially informed

population.

Proof. First note that δp is strictly decreasing in n. For larger n the probability of
meeting a partner, n−1

N−1
, is higher and therefore a deviation against a partner implies

a higher future loss making it less tempting. Second, note that δs is strictly increasing
in n. This is because the probability to meet a stranger, N−n

N−1
, is strictly decreasing in

n which has a direct and an indirect effect on the expected future payoff of a deviating
player. It decreases the fraction of future payoffs the player derives from encounters
with strangers but it also decreases the speed with which the news of a deviation is
transmitted through the population which makes the punishment less effective. For
n = 2 a player’s incentive to deviate is stronger against his partner than against a
stranger so that δp(2) > δs(2). Both deviations cost the cooperation of one player
immediately but the deviation against a stranger also leads to a (delayed) breakdown
of cooperation with N − 3 additional players. For n = N

2
the number of players who

will punish a deviator is nearly identical for deviations against partners and strangers.

5



However, partners punish a deviator immediately whereas the punishment by strangers
needs time to develop. It follows that δp(

N

2
) < δs(

N

2
). For generic parameter-values

the situation therefore looks as depicted in Figure 2. As δ∗(n) = max{δp, δs}, full
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Figure 2: Dependence of δ∗(n) = max{δp, δs} on the partnership–size n for a population of
N = 30 players and G = 2. δp (triangles) is decreasing in n whereas δs (squares) is increasing.
The optimal partnership–size is n∗ = 6.

cooperation is sustainable as sequential equilibrium in the shaded area above the two
thresholds δp and δs. The optimal partnership–size n∗ is one of the two divisors of N

which are closest to the “intersection” of the two thresholds. The negative correlation
between the partnership–size and the speed of information transmission guarantees
that n∗ < N

2
. Without this effect we would have n∗ = N

2
.

Note that n∗ is second best in the sense that it is easiest to sustain cooperation in
a fully informed population (n = N). It is optimal however, if observational imper-
fections exist (n < N). In the presence of observational restrictions there exists an
advantage of having small partnerships. Smaller partnerships allow for faster informa-
tion transmission. The news of a defection amongst strangers is transmitted sufficiently
fast to make the contagious punishment a powerful threat.

5. Conclusion

This paper has focused on the influence of informational structure on the sustainability
of cooperation in a prisoner’s dilemma played in a population of randomly matched
players. By restricting attention to an intuitive class of strategies we found the sur-
prising result that too much information can be detrimental for the sustainability of
cooperation.

6



This paper provides an explanation for the coexistence of cooperative and non–
cooperative behaviour based on observational imperfections. It sheds some light on
the question why cooperative behaviour seems to be contingent on the affiliation to
certain groups. We have focussed on partnerships as a simple form of informational
structure. Networks and other more complicated informational structures could be
considered in future research along these lines.
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