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Abstract
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laws restrict biases to be independent of identity.
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1 Introduction

Sometimes an individual’s success is explained, or even discredited, as resulting from

an initial stroke of good luck. Frank (2016) documents a multitude of careers of over-

achievers, ranging from the arts to business, that were kick-started by fortunate cir-

cumstances or events. Such narratives raise the question: To what extent do economic

institutions or organizational practices amplify the role of luck by making its effects long-

lasting?

A common argument, across different social sciences, is that resources, training, fa-

voritism or, more generally, “biases” granted to early strong performers increase the

likelihood that an initial stroke of luck translates into a final economic advantage. For

example, academic tracking in schools (Gamoran and Mare, 1989) and professional fast-

tracks in firms or public agencies (Rosenbaum, 1979; Forbes, 1987; Baker et al., 1994)

magnify the importance of early performance for final success.1 As a consequence of such

policies, chance events such as graduating during a recession or being the oldest child in

class can have long-lasting effects on both labor market outcomes (Oreopoulos et al., 2012)

and educational achievements (Bedard and Dhuey, 2006).2 Sociologists refer to such phe-

nomena using the term cumulative advantage (Merton, 1968, DiPrete and Eirich, 2006)

and argue that performance differentials, such as those between the publication records

of scientists at elite universities and at other institutions, can be largely explained by

accumulated resource advantages rather than inherent differences in talent (Zhang et al.,

2022).3

If initial success can be attributed at least in part to merit, commonly defined as a

combination of ability and effort (Sen, 2000), the use of such biases can be rationalized

as improving selective efficiency, i.e. the allocation of resources to the most productive

individuals. However, in the limit where noise swamps merit in the determination of

outcomes, using such biases merely makes luck persistent, by inducing final outcomes to

depend on early performance that is almost entirely random. In this paper we argue

that, while seemingly at odds with meritocratic principles, making luck persistent is a

necessary consequence of an organization’s pursuit of the goal of “selection of the best”

1Singapore’s Public Service Leadership Programme selects its candidates upon graduation from college
before supporting their careers within the public administration through designated job assignments and
leadership workshops (https://www.psd.gov.sg/leadership/public-service-leadership-careers).

2There is evidence for these so-called relative age effects for both physical achievements, such as
becoming a player in the National Hockey League (Deaner et al., 2013) and intellectual achievements,
such as becoming CEO of a S&P 500 company (Du et al., 2012).

3A related phenomenon in finance, known as rich-get-richer dynamics, explains performance persis-
tence of hedge funds (Cong and Xiao, 2022) and venture capitalists (Nanda et al., 2020) by the special
investment opportunities originating from a successful initial investment.
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in very noisy environments.4

By explaining how institutions shape the role of luck for individual success, our theory

helps to illuminate the mechanisms behind economic inequality. This is important be-

cause inequality appears to be tolerated when based on merit but not when based on luck

(Konow, 2000; Fong, 2001; Cappelen et al., 2007; Cappelen et al., 2013). Stronger beliefs

in the relevance of luck increase a country’s social spending (Alesina and Angeletos, 2005)

and its citizens’ willingness to implement redistributive policies (Almås et al., 2020). They

also affect what recent critics of meritocracy have denoted as the social divide between

the “deserving” and the “undeserving” (Sandel, 2020). To the extent that political po-

larization is driven by group-identification (Duclos et al., 2004), beliefs about the role of

luck for success may influence political outcomes. This is especially relevant when beliefs

determine the choice between a low-redistribution “American” equilibrium emphasizing

the role of merit and a high-redistribution “European” equilibrium acknowledging the

role of luck (Benabou and Tirole, 2006; Alesina et al., 2018).5

In Section 2 we present a stylized model of a two-agent, two-stage selection process

in which individual performance, at each stage, is the sum of an agent’s time-invariant,

unobservable ability, privately-chosen effort, and a transitory shock. Agents are ex ante

identical to the organization but may share private information about relative abilities.

The organization observes only the ordinal ranking of performances at each stage and

attempts to select the more able agent.6 Agents choose efforts to maximize the probability

of being selected, minus their effort costs.7 The organization’s optimal selection rule

augments the second-stage performance of the agent who performed best in the first

stage with an additive bias and selects the agent who performs best in the second stage.

Our main focus of interest is the persistence of early success, i.e. the probability with

which, in equilibrium, the agent with the better initial performance is selected in the final

stage.

We start our analysis in Section 3 by considering the case where agents are as unin-

4The term “meritocracy” originates from Young’s (1958) apocalyptic vision of a future society in
which “merit” serves as the central determinant of an individual’s power and wealth. In spite of a dispute
over what constitutes merit, modern democracies claim to adopt merit as a basis for their allocation of
resources and decision-making power (Piketty, 2014).

5Experimental studies on redistribution find that U.S. subjects implement Gini-coefficients 0.2 points
lower when incomes are based on luck than when incomes are based on merit, which would be sufficient
to bring down U.S. inequality to European levels (Lefgren et al., 2016).

6Ordinal performance measurement arises naturally when performance is hard to quantify. Lazear
(2000) documents that for managers, piece rates are employed ten times less frequently than for operatives,
and attributes this difference to the absence of a cardinal measure of managerial performance.

7Lazear and Rosen (1981) argue that competing to become selected, e.g. for promotion, can provide
workers inside firms with efficient incentives to exert effort and may thus substitute incentive schemes
that rely on cardinal performance measurement when performance is hard to quantify.
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formed about their relative abilities as the organization. We first show that effort choices

will be identical across agents in both stages, in spite of the asymmetries induced by learn-

ing from the first-stage performance and the application of the second-stage bias. In the

absence of private information, effort choices thus have no effect on selective efficiency,

implemented bias, or persistence. Our main result shows that in the limit as noise swamps

ability differences as a determinant of performance, equilibrium bias converges to a strictly

positive value. In other words, even when ability differences have only negligible impact

on performance, optimal bias makes first-stage winners considerably more likely to be

selected than first-stage losers: Luck is made persistent. This shows that the persistence

of luck illustrated by our motivating examples need not reflect the use of too much or the

wrong kind of bias, but rather emerges as a necessary consequence of an organization’s

attempt to “select the best” in environments where individual performance is noisy.

To provide further insight into the relation between selective efficiency and the persis-

tence of luck, we consider an alternative setting where performance information is cardinal

rather than ordinal, so bias can condition on the first-stage margin of victory. We show

that for noise distributions that are normal, or thinner-tailed, organizations will make luck

more persistent when individual performance can be ranked but not quantified. Further-

more, this greater persistence of luck under ordinal than cardinal evaluation is equivalent

to greater front-loading of the dynamic selection process in the former case, in that first-

stage noise is given a relatively more important role than second-stage noise. As ordinal

performance measurement is more prevalent towards the top of an organization’s hierar-

chy, our theory thus highlights the importance of initial luck for selection into positions

where selection is most consequential.

In Section 4 we consider the case where, in comparison to the organization, agents

have superior, possibly imperfect, information about their relative abilities. Because, in

our setting, effort acts as a substitute for ability in increasing performance, strategic

behavior might be expected to decrease the informativeness of the agents’ first-stage

ranking, thereby reducing or even eliminating the need to make luck persistent through

the application of bias. We show that, contrary to this intuition, informed agents’ strategic

behavior amplifies the persistence of luck, because the agent more likely to be better

exerts a strictly larger first-stage effort than his rival, thereby reinforcing the agents’

ability differential on average. This result resonates well with the prominent role of biased

selection—in the form of fast-tracking and high-potential programs—for careers such as

management consulting where collaboration in small, close-knit teams allows workers

to obtain an informational advantage over their superiors regarding their co-workers’

abilities.

4



Finally, in Section 5 we extend our model to allow for a type of luck that originates

outside of the organization. Following Akerlof and Kranton (2005), we assume that some

agent (randomly selected) possesses an “identity” (e.g. ethnicity, gender, socio-economic

background) that gives him an additive but transitory exogenous advantage over his rival.

Investigating the mechanisms that propagate such forms of “societal luck” by making its

effects long-lasting ranks high on the agenda of the literature on cumulative advantage

(DiPrete and Eirich, 2006) and cumulative discrimination (Blank, 2005). We highlight

that an important factor influencing the persistence of societal luck is whether or not orga-

nizational selection can condition on whether early success was achieved with or without

an exogenous advantage, i.e. whether bias can depend on agents’ identity. We show that,

if bias must be identity-independent, then societal luck is always made persistent, whereas

allowing biases to depend on identity not only increases the organization’s selective ef-

ficiency but also reduces the persistence of societal luck. We further prove that agents’

strategic response to the manner in which biases are set amplifies these beneficial effects

of identity-dependent biases. These results suggest that non-discrimination policies that

constrain an organization’s selection process may backfire by propagating the disadvan-

tages from unequal opportunities, especially when agents have the opportunity to adjust

their behavior in response to such policies.

All proofs are in the Appendix.

Related literature Our paper contributes to the literature on organizational learning.

Driven by emerging evidence about the functioning of internal labor markets (Baker et al.,

1994), the seminal studies by Farber and Gibbons (1996), Gibbons and Waldman (1999,

2006), and Altonji and Pierret (2001) have identified firms’ learning about workers’ pro-

ductivity as a key factor explaining wage and promotion dynamics. A robust empirical

finding is that early wage increases and early promotions increase the probability of later

promotions. Whether this correlation is caused by workers’ inherent productivity differ-

entials or by a “fast-track effect” is controversial, with U.S. evidence in favor of the former

(Belzil and Bognanno, 2008) and Japanese evidence pointing towards the latter (Ariga

et al., 1999). While in the seminal models serial correlation of promotion rates arises

from workers’ time-invariant ability differences, our model shows that even when ability

differences become negligible, serial correlation can be explained by the non-vanishing

optimality of fast-tracking (bias). The special relevance of early performance for careers

is underlined by Lange’s (2007) finding that “employers learn fast”.8 Pastorino (2024)

8Using Armed Forces Qualification Test scores as measures of unobserved ability, Lange (2007) finds
that it takes only 3 years for employers’ expectation error about workers’ productivity to decline by one
half. Similarly, Lluis (2005) finds evidence that employer learning affects mobility between upper and
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supports this view by documenting firms’ tendency to assign newly employed managers

to tasks that are particularly informative about their abilities. According to our theory,

such a task assignment augments the persistence of luck because a greater bias is required

to raise the informativeness of the less informative later tasks. Her structural estimates

provide strong evidence that learning, besides human capital accumulation, has a sizeable

impact on career outcomes.

Our analysis builds on the organizational learning model of Meyer (1991) but incor-

porates the possibility that agents exert effort to influence their performance. Including

effort is important in light of an ongoing controversy over what constitutes merit (Sen,

2000) and given our focus on the relevance of luck—as opposed to merit—for individ-

ual success. It allows us to decompose merit into a non-strategic part (“ability”) and a

strategic part (“effort”) and to study how these two components interact to shape the

role of luck for economic outcomes. Notably, the broader notion of merit that makes

agents “responsible” for their performance induces organizational selection to assign an

even greater role to luck, but only if agents are informed about their relative abilities.

Finally, our results about the effects of biased selection on the persistence of ad-

vantages individuals derive from their identity contributes to a literature investigating

whether selection (e.g. college admission, hiring) should be group-contingent. Sethi and

Somanathan (2023) provide an argument for why a disproportionately large representation

of members from disadvantaged groups can be necessary to achieve selective efficiency.

In our model, allowing organizations to bias selection more strongly in favor of disadvan-

taged agents is similarly beneficial for selective efficiency but part of the effect comes in

form of agents’ strategic responses.

Our finding that organizations can make inequality emerge even when individuals

have starting points that are approximately equal is shared by Bardhi et al. (2023). They

show that small disadvantages which workers experience early in their careers, e.g. due to

discrimination, can have long-lasting effects in professions that track on-the-job-failures,

such as pilots or surgeons. The underlying learning mechanism differs from ours because it

is based on a scarcity of tasks that requires the organization to chose from which agent to

learn at any moment in time, rather than to learn from a sequence of relative performance

evaluations.

executive levels of German firms but only for workers below 35 years of age. For more experienced workers
learning is found to continue to matter when workers differ in how their productivity evolves over time
(Kahn and Lange, 2014).

6



2 Model

We consider an organization consisting of a risk-neutral principal and two agents i ∈
{A,B} with heterogeneous abilities ai. The difference in abilities or heterogeneity is given

by h > 0, i.e. ∆a ≡ aA − aB ∈ {−h, h}. The principal observes the agents’ relative

performance during two stages, t ∈ {1, 2}. After the second stage, the principal needs to

select one of the agents for a higher-level task whose payoff to the principal is increasing

in the selected agent’s ability. The principal’s goal is thus simple: to select the more able

agent.

Agent i’s performance at stage t, xi,t ∈ ℜ, is the sum of three elements: the agent’s

time-invariant ability ai, multiplied by a stage-specific weight λt > 0; the agent’s private

choice of effort ei,t ≥ 0; and a time-varying random component ϵi,t ∈ ℜ.9 That is,

xi,t ≡ λtai + ei,t + ϵi,t. (1)

Variation in λt across stages accounts for potential differences in the impact of ability on

performance. This is especially relevant when agents’ task changes over time.

Information and choices The principal and the agents share a common prior, q0 ≡
P(∆a = h) ≥ 1

2
, but for the principal, agents A and B are indistinguishable. If q0 = 1

2
,

the agents are as uninformed as the principal, while if q0 > 1
2
, the agents have superior

information about their relative abilities, with both agents believing that agent A is more

likely to be better.10

The principal can observe only the ranking of the two agents’ performances after the

first stage. In the second stage, the principal may costlessly and publicly assign a bias

β ∈ ℜ to the winner of the first stage. If β > 0, the bias increments the winner’s second-

stage performance, and we say that the bias “favors” the first-stage winner, whereas if

β < 0, it reduces his second-stage performance. Having won the first stage, agent i is

then identified as the winner of the second stage if xi,2 + β > xj,2.

The principal’s chooses the size of the bias β and the selection rule to maximize

selective efficiency, S(β;h), defined as the probability that the more able agent is selected.

The agents exert efforts ei,t in each stage to maximize the probability of being selected

minus the effort costs. The value of being selected is the same for both agents and is

normalized to 1. The cost-of-effort functions Ct(ei,t), t = 1, 2, are strictly increasing and

9By logarithmic transformation, our results remain qualitatively unchanged when performance equals
the product rather than the sum of ability, effort, and noise.

10Virtually all the employer learning models reviewed in the Introduction assume that workers are
ignorant about their own ability, and hence correspond to the case q0 = 1

2 .
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convex. Thus, effort costs are identical across agents but may differ across stages.

Noise The distribution of the difference in the individual noise terms, ∆ϵt ≡ ϵA,t−ϵB,t, is

a key primitive in our model because outcomes depend only on performance differentials.

We assume that ∆ϵt are identically and independently distributed across stages and denote

the corresponding support by [−z, z] (where z may be infinite), the cumulative distribution

function by G, and its density by g. We make the following distributional assumptions:

Assumption 1 (i) g is symmetric about 0; (ii) g is strictly log-concave; (iii) g is differ-

entiable on (−z, z); (iv) limy→z L(y) = ∞, where

L(y) ≡ −g′(y)

g(y)
. (2)

The symmetry of g captures the idea that the only source of heterogeneity across agents

is their difference in abilities; it is a weaker assumption than individual shocks, ϵi,t, being

i.i.d. across agents. Log-concavity of g is equivalent to the monotone likelihood ratio

property in our setting; it guarantees that, in either stage, a larger performance differential

∆xt ≡ xA,t − xB,t implies a higher likelihood that A’s ability exceeds B’s. It also implies

that L is increasing. Strict log-concavity makes all the implications strict. Together with

the remaining two assumptions it ensures that the principal’s problem is well-behaved.

Timing In the beginning of the first stage, the agents observe who is likely to be better.

Then they exert efforts. The noise is realized and both the principal and the agents

observe who has higher first-stage performance. In the beginning of the second stage, the

principal chooses the level of bias. Then the agents exert efforts. The noise is realized and

both the principal and the agents observe who has a higher second-stage performance.

The principal then selects one of the agents. Note that the principal chooses the bias

after the first stage rather than committing to it in the beginning.11

Equilibrium The solution concept is perfect Bayesian equilibrium (PBE). In a PBE,

(i) the effort choice by each agent at each stage is optimal for him given his conjectures

about the effort choices of the other agent and the bias set by the principal; (ii) the bias

and the selection rule are optimal for the principal given her conjectures about the agents’

efforts; and (iii) the conjectures of both agents and the principal are correct.

It is easy to confirm that when the principal chooses the bias optimally, the optimal

selection rule is to select the winner of the second stage.

11All of our results in Section 3 continue to hold when the principal can commit to the bias before
agents choose their efforts in the first stage.
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Persistence Our main focus of interest is the persistence of outcomes induced by the

interaction between the principal’s pursuit of selective efficiency and the agents’ desire to

be selected. We define persistence as the probability, in equilibrium, that the winner of

the first stage is selected after the second stage.

It is important to note that the key parameter of our model, h > 0, which captures the

degree of agents’ heterogeneity in abilities, also has a broader interpretation as the ratio

of agents’ heterogeneity to the scale of noise.12 To shed light on the role of initial luck

for final outcomes, much of the analysis in Sections 3 and 4 will focus on the setting in

which h is very small: Here the scale of noise is large relative to the agents’ heterogeneity

and, as we show, differences in agents’ efforts vanish. Note that even in this environment,

the selection decision may still be important to the principal, because the selected agent’s

performance in the higher-level task may be very sensitive to ability.

When, in this limiting environment, persistence turns out to be strictly larger than

one-half, we will say that luck is made persistent, because the first-stage winner has a

greater chance of ultimately being selected than the first-stage loser, in spite of the fact

that the first-stage outcome is almost entirely determined by random factors.

3 Uninformed agents

In this section, we consider the case where agents are as uninformed as the principal

about their relative abilities. We show that, in this case, the agents’ ability to influence

their performance through the exertion of effort has no impact on selective efficiency, and

hence no impact on the principal’s choice of bias or on the persistence of early success.

This allows us to develop the basic intuition for the connection between these variables,

before turning our attention in the next section to the effects of informed agents’ strategic

behavior. The main results of this section are that an organization’s optimal use of

bias makes luck have a persistent effect on final selection (Section 3.1) and that, under

mild conditions on the distribution of noise, luck is made more persistent when agents’

performances can be ranked but not quantified (Section 3.2).

12To see this, introduce a scaling transformation ∆ϵt → σ∆ϵt, with σ > 1, which makes the difference
in the noise terms more dispersed: The cdf becomes G(∆ϵt

σ ), the pdf 1
σ g(

∆ϵt
σ ), and the support [−σz, σz].

If the underlying heterogeneity in abilities is H, then G(λ1H
σ ) is the probability that, when the first-stage

effort differential is zero, the more able agent wins the first stage. It depends on H and σ only through
the heterogeneity-to-noise ratio h ≡ H

σ .
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3.1 Persistence of luck

The following lemma is critical, as it shows that, in equilibrium, the efforts of uninformed

agents cancel each other in the determination of relative performance.

Lemma 1 (Identical efforts) Let q0 = 1
2
. Then for any anticipated choice of bias β ≥ 0

by the principal, there exists a unique pure-strategy equilibrium in efforts. In this equilib-

rium, agents choose identical efforts, both in the first stage and in the second stage.

In the second stage, despite the asymmetries due to learning and the use of bias, the

marginal benefit of effort is the same for the two agents. This is because the value of

winning, the marginal impact of effort on performance, and the pivotal realizations of

∆ϵ2 (whether the stage-one winner was in fact the more or the less able agent) are all

identical for A and B, cf. Lazear and Rosen (1981). In the first stage, given the symmetry

of the agents’ situation, there exists a pair of identical efforts that are best responses to

each other. We show by contradiction that unequal efforts could not be best responses,

whatever value of β ≥ 0 the agents expect the principal to choose.13 Specifically, if agent

A were to exert more effort than agent B in stage one, then a stage-one win by B would

be a stronger signal of ability than a win by A. Hence, the biased stage-two contest would

be more unbalanced following a win by B and would therefore induce lower stage-two

effort. But lower stage-two efforts after a win by B would generate stronger stage-one

incentives for B than for A, which contradicts the initial assumption.

Given Lemma 1, the probability S(β;h) with which the more able agent is selected

(“selective efficiency”), when the principal selects the winner of the biased second stage,

is given by

S(β;h) = G(λ1h)G(λ2h+ β) + [1−G(λ1h)]G(λ2h− β). (3)

The first term in the sum is the probability that the more able agent wins the first

stage and then wins the second stage with bias β in his favor. The second term is the

probability that the more able agent loses the first stage but then wins the second stage

despite being disadvantaged by the bias.

Differentiating with respect to β and rearranging yields the following first-order con-

dition for the principal’s choice of bias:

G(λ1h)

1−G(λ1h)
=

g(λ2h− β)

g(λ2h+ β)
. (4)

The ratio on the left-hand side is the relative likelihood that a first-stage win is achieved

13Even if the principal expected a non-zero stage-1 effort differential, it would never be optimal to
choose β < 0, i.e. to favor the stage-1 loser; for more detail, see Section 5.
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by the more able agent compared to the less able one. The higher this likelihood ratio,

the stronger a signal about relative ability is a victory in the unbiased first stage. The

term on the right-hand side is also a likelihood ratio: It is the relative likelihood that a

stage-2 draw when agent j is disadvantaged by bias β, i.e. xj,2−β = xi,2, is achieved when

j is the more able agent compared to when j is the less able one. Equation (4) shows

that optimal bias strikes a balance between the informativeness of the ordinal stage-1

ranking – an unbiased win – and the informativeness of the marginal stage-2 outcome –

a draw achieved despite being handicapped by bias. In equilibrium, bias is such that, if

the principal were to observe a draw in stage two, she would be indifferent about which

agent to select.

Note that, for β = 0, the right-hand side of (4) is equal to one and hence strictly

smaller than the left-hand side. This is because, for β = 0, a second-stage draw is

uninformative about the agents’ abilities. Moreover, given the strict log-concavity of g, as

the size of the bias disadvantaging the stage-1 loser increases, a stage-2 draw becomes a

strictly stronger signal about that agent’s relative ability. It thus follows from Assumption

1 that the first-order condition (4) has a unique solution, β∗(h) > 0, which maximizes

selective efficiency. Moreover, since the left-hand (right-hand) side of (4) is increasing in

λ1 (λ2), which measures the sensitivity of stage-1 (stage-2) performance to ability, β∗(h)

is increasing in λ1 and decreasing in λ2.

While these arguments establish that a positive bias will emerge in equilibrium for any

level h > 0 of heterogeneity in abilities, it is not clear what happens in the limit as h → 0.

Does bias converge to zero? The following proposition characterizes the limiting value of

the equilibrium bias as the scale of the noise swamps the heterogeneity in abilities.

Proposition 1 (Equilibrium bias) Let q0 = 1
2
. The principal’s equilibrium choice of

bias, β∗(h), is strictly positive, even in the limit as noise swamps agents’ ability differ-

ences. More specifically, β∗
0 ≡ limh→0 β

∗(h) > 0 is given by the unique solution of the

equation

2λ1g(0) = λ2L(β
∗
0). (5)

At first sight, the fact that bias remains strictly positive, even in the limit, may seem

counter intuitive, because when h tends to zero, a first-stage win becomes completely

uninformative about relative abilities. However, this reasoning neglects the fact that,

as h tends to zero, a second-stage draw also becomes uninformative, for any level of

bias. Formally, as h tends to zero, both sides of equation (4) approach one. Proposition

1 thus characterizes equilibrium bias in this limit by equating the rates at which the

informativeness of each stage tends to zero as h gets small. Since L is a strictly increasing

function, L(0) = 0, and the LHS of (5) is positive, the limiting value of bias must be
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positive. More intuitively, observe that, when bias is zero, achieving a second-stage draw is

uninformative about relative abilities for any ratio h of heterogeneity to noise, whereas the

informativeness of a first-stage win rises with h. Thus, a strictly positive bias emerges in

the limit because, unless first-stage losers are disadvantaged relative to first-stage winners

even when ability differences are negligible, the informativeness of a second-stage draw

cannot keep up with the informativeness of a first-stage win when ability differences start

to matter.

An alternative interpretation of the limiting value of optimal bias is illustrated in

Figure 1. In the limit as h → 0, bias is chosen to maximize not the level of selective

efficiency—since selective efficiency becomes independent of bias in the limit—but the

rate at which selective efficiency increases with the agents’ heterogeneity. In the limit,

optimal bias thus maximizes the potential gains to selective efficiency from a marginal

increase in agents’ heterogeneity; were bias set to zero, these gains would not be fully

realized.

Figure 1: Selective efficiency. The figure depicts selective efficiency S as a function of
agents’ heterogeneity h for different values of bias. β∗

0 > 0 maximizes the slope of S at
h = 0.

Though the logic behind the equilibrium level of bias is clear in the limit, the de-

pendence of β∗(h) on the heterogeneity-to-noise ratio for h > 0 can be complex. This

is because an increment in h increases both sides of equation (4): It raises both the in-

formativeness of a first-stage win and—by log-concavity of g—the informativeness of a

second-stage draw, for any given level of bias. The complex dependence of β∗(h) on h is

illustrated in Figure 2. The left panel plots the density functions for the family of expo-
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Figure 2: Example distributions of noise and equilibrium bias. The left panel
depicts the density functions when noise follows an exponential power distributions with
mean zero and shape parameter η ∈ {1.5, 2, 3, 4, 7}. The right panel plots the correspond-
ing equilibrium bias, as h varies, assuming that the impact of ability on performance is
time-invariant, i.e. λ1 = λ2 = 1.

nential power distributions with mean zero and shape parameter η > 1.14 The right panel

in Figure 2 plots the equilibrium bias β∗(h) as a function of h, for λ1 = λ2 = 1. Despite

the myriad possibilities illustrated, we see that, as shown by Proposition 1, equilibrium

bias remains positive even as h gets small for all members of the family.

Our results about the optimal use of bias for selection have implications for our under-

standing of the relevance of luck for the determination of economic outcomes. According

to meritocratic principles, the allocation of resources and decision-making power should

be attributable to merit—a combination of ability and effort—rather than luck. In light

of this principle, it is important to ask how institutions and organizational practices shape

the dynamic relationship between performance and outcomes. A straightforward but im-

portant implication of the introduction of bias is that it raises the correlation between

initial success and final selection. To see this, define the persistence of the selection pro-

cess as the probability with which the first-stage winner is selected after the second stage,

14 These density functions are given by g(∆ϵt; η) =
η

2Γ( 1
η )

exp(−|∆ϵt|η), and for all η > 1, they satisfy

Assumption 1. For η = 2, g(∆ϵt; η) is a normal distribution with variance 1
2 ; as η → ∞, g(∆ϵt; η)

approaches a uniform distribution with support [−1, 1]; and as η → 1, g(∆ϵt; η) approaches a Laplace
distribution with scale parameter 1. At η = 1, Assumption 1 is violated because the Laplace density is
not differentiable at 0 and is not strictly log-concave.

13



in equilibrium. Given Lemma 1, persistence is independent of efforts and is given by:

P (β∗(h);h) = G(λ1h)G(λ2h+ β∗(h)) + [1−G(λ1h)][1−G(λ2h− β∗(h)]. (6)

Of course, even in the absence of bias, initial success and final selection are positively

correlated, and hence P (0;h) > 1
2
, because the outcomes of both stages are affected by the

time-invariant ability differential h > 0. However, in the limit as h → 0, this correlation

would vanish, and hence persistence would approach 1
2
, unless it were induced through

the use of bias. That is, defining P ∗
0 ≡ limh→0 P (β∗(h);h), we have from (6) that

P ∗
0 = G(β∗

0) and P ∗
0 >

1

2
⇐⇒ β∗

0 > 0. (7)

Hence, a direct implication of Proposition 1 is that luck is made persistent : P ∗
0 > 1

2
.

Also note that (5), coupled with the strict monotonicity of L, implies that β∗
0 , and hence

P ∗
0 , is increasing in the ratio λ1/λ2, which measures the relative sensitivity to ability of

first-stage compared to second-stage performance. This is true even though in the limit,

ability has only a negligible impact on performance. Recent work by Pastorino (2024)

shows that firms tend to allocate to newly-hired workers those tasks that are relatively

more informative about their abilities; our results show that this pattern of task allocation

enhances the persistence of luck.

In addition, because persistence in (6) is increasing both in the bias and in hetero-

geneity, the fact that, as shown by Figure 2, equilibrium bias β∗(h) can be decreasing

suggests that, overall, persistence could also be decreasing in h. This possibility is con-

firmed by Figure 3, where for η = 7 and relatively small h, equilibrium persistence falls

as the difference in agents’ abilities rises.

Contrasted with meritocratic principles, the observations in the preceding two para-

graphs are noteworthy, and we summarize them formally:

Corollary 1 (Persistence of luck) Let q0 = 1
2
. When bias is set to maximize selective

efficiency,

(i) Luck is made persistent, i.e. P ∗
0 > 1

2
, and even more so when early performance is

relatively more sensitive to ability, i.e. P ∗
0 is strictly increasing in λ1

λ2
.

(ii) Initial performance may have a greater impact on final selection in situations where

performance differences are less attributable to ability differentials, i.e. there exist

noise distributions g(·) and ranges of h for which P (β∗(h);h) is decreasing in h.

Corollary 1 shows that two apparent violations of meritocratic principles can be rational-

ized by the very fact that organizations aim to allocate resources to the most talented

14



Figure 3: Equilibrium persistence. The figure plots the likelihood P (β∗(h);h) that
winning the initial stage results in becoming ultimately selected, in dependence of the ratio
h of agents’ heterogeneity to noise. It is assumed that ability has time-invariant impact
on performance, λ1 = λ2 = 1, and that noise follows an exponential power distributions
with mean 0 and shape parameter η ∈ {1.5, 2, 3, 4, 7}.

individuals. The first part shows that making luck persistent, that is, biasing selection in

favor of early strong performers even when initial success is almost entirely due to luck, is a

necessary consequence of maximizing selective efficiency. The second part shows that the

use of bias for selection may make final success less correlated with initial performance

in settings where performance differentials are more attributable to ability differences.

Our analysis implies that neither of these features should necessarily be considered an

abandonment of meritocratic principles.

3.2 Cardinal performance evaluation

In the remainder of this section we analyze how the use of bias, and its consequences for

the persistence of luck, vary with the way in which performance differentials are measured,

contrasting the case of ordinal information, studied so far, to that of cardinal informa-

tion. Lazear (2018) argues that ordinal performance evaluation is prevalent towards the

top of an organization’s hierarchy, given the difficulty of quantifying the performance of

increasingly complex tasks. This means that in situations where selection matters most,

for both the organization and the agents themselves, ordinal performance measurement

may be the most relevant case. However, a comparison with the case where the principal

can quantify the agents’ performance differentials helps to highlight the specific contri-
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bution of rank-order information to the persistence of luck. It may also help to assess

whether luck can be expected to play a more important role for selection into positions

with higher ranks.

When all parties can observe the stage-1 performance differential, ∆x1 = xA,1 − xB,1,

and can condition their stage-2 actions on it, there exists an equilibrium in which, in both

stages, agent A exerts the same effort as agent B.15 Hence, in this equilibrium, similarly to

Section 3.1, efforts do not matter for the selective efficiency or persistence. The probability

of a margin of victory |∆x1| being generated by the stronger agent is g(|∆x1| − λ1h),

whereas for the weaker agent the corresponding probability is g(|∆x1| + λ1h). Given

observed |∆x1|, the principal then chooses the bias to maximize

Scard(β, |∆x1|;h) = g(|∆x1| − λ1h)G(λ2h+ β) + g(|∆x1|+ λ1h)G(λ2h− β). (8)

Intuitively, a larger margin of victory |∆x1| is a stronger signal about the winner’s ability

and thus induces the principal to choose a larger bias βcard(|∆x1|, h).
Optimal bias under cardinal information is particularly transparent when performance

in the two stages is equally sensitive to ability, that is, when λ1 = λ2. It is then optimal

for the principal to select the agent with the higher aggregate performance, xi,1 + xi,2.

This selection rule can be implemented by biasing the second stage in favor of the first-

stage winner by exactly |∆x1|, the first-stage margin of victory. Hence, in this case,

βcard(|∆x1|, h) = |∆x1|, for all |∆x1| and h.

In general, the equilibrium bias when performance evaluation is ordinal, β∗(h) given by

(4), can be thought of as a form of an average of the equilibrium biases βcard(|∆x1|, h) un-
der cardinal evaluation, as |∆x1| varies. Proposition 2 makes this intuition precise for the

limiting case where noise swamps ability. We define βcard
0 (|∆x1|) ≡ limh→0 β

card(|∆x1|, h).

Proposition 2 (Cardinal bias) Let q0 = 1
2
. When the principal can condition bias on

cardinal performance information |∆x1|, the following holds as h → 0:

(i) βcard
0 (|∆x1|) > 0 whenever |∆x1| > 0, and βcard

0 (|∆x1|) solves

L(βcard
0 (|∆x1|)) =

λ1

λ2

L(|∆x1|). (9)

(ii) Cardinal bias and ordinal bias are related according to

E[L(βcard
0 (|∆x1|))] = L(β∗

0), (10)

15In close analogy to Lemma 1, agents exerting identical efforts constitutes the unique pure-strategy
equilibrium if agents anticipate that the principal chooses bias optimally, based on cardinal performance
information and given her conjecture about agents’ efforts.
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and when the difference in the agents’ noise terms is normally distributed, so L(·)
is linear, E[βcard

0 (|∆x1|)] = β∗
0 .

A direct implication of Proposition 2(i), recalling (6) and (7), is that with cardinal per-

formance evaluation, luck is made persistent on average, i.e.

P card
0 ≡ lim

h→0
E[P (βcard(|∆x1|, h), h)] = E[G(βcard

0 (|∆x1|)] >
1

2
. (11)

For the special case of λ1 = λ2, since the principal selects the agent with the higher

aggregate performance xi,1 + xi,2, we have, for any noise distribution g,

P card
0 = lim

h→0
P(∆x1 +∆x2 ≥ 0|∆x1 ≥ 0) = P(∆ϵ1 +∆ϵ2 ≥ 0|∆ϵ1 ≥ 0) =

1

2
+

1

4
=

3

4
, (12)

since ∆ϵ1 and ∆ϵ2 are i.i.d.

To highlight the specific contribution of ordinal evaluation to the persistence of luck,

we compare P card
0 with P ∗

0 in (7), the persistence under ordinal evaluation. Figure 3,

which is plotted for λ1 = λ2 = 1, shows that P ∗
0 is larger than 3

4
for all values of the

shape parameter depicted. For η = 2 (∆ϵt normally distributed), this is not surprising,

given that E[βcard
0 (|∆x1|)] = β∗

0 and given that persistence in (11) is the expectation of a

concave function of bias.16 In fact, combining this insight with (10), a sufficient condition

for P ∗
0 to exceed P card

0 is that the function L(.) is convex, since convexity of L implies

that the limiting ordinal bias is at least as large as the expected limiting cardinal bias.17

Distributions for which L(·) is convex are those with densities g̃ that are thinner-tailed

than the normal distribution, more precisely, those that are more log-concave than the

normal in the sense that ln g̃ is a concave transform of ln g, for g normal.

The following corollary shows that this insight extends to the case of arbitrary λ1, λ2.

Corollary 2 (Persistence of Luck: Cardinal versus ordinal evaluation) Let q0 =
1
2
and suppose that the function L(·) is convex.

(i) The persistence of luck will be greater when performance evaluation is ordinal than

when it is cardinal, i.e.

P ∗
0 = G(β∗

0) > E[G(βcard
0 (|∆x1|)] = P card

0 . (13)

16Concavity of G on the positive domain follows from the log-concavity and symmetry about 0 of g.
17Convexity of L(·) is not necessary for this conclusion. For the exponential power family of distribu-

tions in fn. 14, L is convex if and only if η ≥ 2, but for λ1 = λ2, the persistence of luck is larger under
ordinal than under cardinal evaluation for all η > ∼1.38.

17



(ii) The inequality in (13) is equivalent to the organization assigning greater relative

weight to stage-1 performance than to stage-2 performance when performance eval-

uation is ordinal than when it is cardinal, as h → 0, i.e. for all λ1, λ2,

P(select A|∆ϵ1 > 0,∆ϵ2 < 0, ord.)

P(select A|∆ϵ1 < 0,∆ϵ2 > 0, ord.)
>

P(select A|∆ϵ1 > 0,∆ϵ2 < 0, card.)

P(select A|∆ϵ1 < 0,∆ϵ2 > 0, card.)
. (14)

Corollary 2 shows that if, as argued by Lazear (2000), organizations are constrained to

use ordinal performance measurement at high ranks because of the difficulty of quantifying

performance in complex tasks, luck may have especially persistent effects on selection at

the top of the hierarchy.

Corollary 2 also shows that greater persistence of luck under ordinal than cardinal

evaluation is equivalent to greater “front-loading” of the dynamic selection process when

performance evaluation is constrained to be ordinal. This inflation of the importance

of early luck under ordinal evaluation is especially transparent when the two stages are

intrinsically equally informative about abilities, i.e. λ1 = λ2: Whereas under cardinal

evaluation luck is weighted equally across stages (the RHS of (14) equals one), under

ordinal evaluation early luck has a greater impact on selection than later luck (the LHS

of (14) is greater than one).

4 Informed agents

Our baseline model shares with the literature on organizational learning (e.g. Gibbons

and Waldman, 2006; Lange, 2007; Pastorino, 2024) the assumption that agents are as

uninformed about their relative abilities as the principal. But what if agents have an in-

formational advantage relative to the principal right from the start? For example, workers

might know each other from college or might have shared experiences with previous em-

ployers, allowing them to better judge their relative abilities. We capture this by assuming

that q0 ≡ P(∆a = h) > 1
2
, where ∆a = aA − aB. While with uninformed agents, Lemma

1 showed that effort choices had no impact on the principal’s learning, because in equi-

librium efforts cancelled each other in the determination of relative performance, with

informed agents, their efforts may no longer be identical. In this section, we examine how

the strategic behavior of informed agents impacts organizational learning and persistence.

Because effort and ability are substitutes for agents’ performance, the agent thought

less likely to be the more able might use effort to try to compensate for his ability disadvan-

tage, thereby decreasing the informativeness of early performance about relative abilities,

reducing the optimal bias, and weakening our result about the persistence of luck. In fact,
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we show that, on the contrary, informed agents’ strategic behavior reinforces the impact

of agents’ ability difference, resulting in luck being made even more persistent than when

agents are ignorant of relative abilities. The following lemma represents the crucial step

in our argument:

Lemma 2 (Informed agents’ effort differential) Let q0 > 1
2
. Then for any antici-

pated choice of bias β > 0, agents choose identical efforts in the second stage, but in the

first stage, the agent thought more likely to have higher ability exerts a strictly larger effort

than his rival.

The explanation for why the agents choose identical efforts in stage 2 is the same as

for Lemma 1. To understand the sign of the stage-1 effort differential

∆e∗1(β, h, q
0) ≡ e∗A,1(β, h, q

0)− e∗B,1(β, h, q
0) > 0, (15)

note first that because exactly one agent will be selected after stage 2, the “rewards”

of winning the first stage arising from the increased probability of being selected are

precisely the same for the two agents. However, in contrast to the case where agents

are uninformed, the level of effort that agents exert in stage 2, and hence their effort

cost, now depends on which agent turns out to be the stage-1 winner. To see this most

clearly, suppose for simplicity that q0 = 1, so that agent A is known with certainty to be

more able. Recall that the principal is aware of the agents’ superior knowledge but cannot

distinguish agent A from agent B, so must assign the same level of bias whoever wins stage

1. If agent A wins the first stage, then the bias will reinforce the agents’ ability difference,

and the pivotal realization of noise ∆ϵ2 driving second-stage efforts will be determined by

C ′
2(e

∗
A,2) = g(h + β) = C ′

2(e
∗
B,2). If, instead, agent A loses the first stage, then bias will

mitigate the agents’ ability difference, so C ′
2(e

∗
A,2) = g(h − β) = C ′

2(e
∗
B,2) will determine

the pivotal realization of ∆ϵ2 driving second-stage efforts. Because g(h + β) < g(h − β)

by log-concavity of g, agent A faces lower second-stage effort costs after winning the first

stage than after losing, so A has a “cost-saving incentive” to win the first stage. For agent

B, the argument is reversed because bias mitigates agents’ heterogeneity when B wins

but reinforces it when B loses, so agent B has a “cost-saving disincentive” for stage-1

effort.

Lemma 2 shows that, in equilibrium, informed agents’ stage-1 effort differential on

average reinforces the ability difference, thus raising the informativeness of the first-stage

outcome. The following result extends Proposition 1 to the case of informed agents under

the additional assumption that effort costs are quadratic.18

18The assumption of quadratic costs simplifies the proof that the equilibrium in the limit as h → 0 is
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Proposition 3 (Bias with informed agents) Let q0 > 1
2
and suppose that Ct(ei,t) =

c
2
e2i,t for all i, t. In the limit as noise swamps ability differences, equilibrium bias β∗

0(q
0) ≡

limh→0 β
∗(h, q0) is unique, strictly positive, and strictly increasing in q0, and it solves:

2g(0)

[
λ1 + (2q0 − 1)

∂∆e1(β
∗
0(q

0), 0, q0)

∂h

]
= λ2L(β

∗
0(q

0)). (16)

Proposition 3 shows that our insights about the optimal use of bias for selection

are robust to the introduction of private information on the part of the agents about

their relative abilities. In particular, equilibrium bias continues to remain positive in the

limit as noise swamps ability differences. Even though in this limit, the stage-1 effort

differential ∆e1(β, h, q
0) between the “better” agent A and the “worse” agent B vanishes,

limh→0
∂∆e1(β,h,q0)

∂h
> 0, which implies that the informativeness of the stage-1 outcome

increases as h rises from 0; hence, the left-hand side of (16), just like the left-hand side of

(5), is strictly positive, ensuring that equilibrium bias β∗
0(q

0) is strictly positive.

The proposition also reveals that the limiting equilibrium bias is strictly increasing in

the precision q0 of the agents’ private information and that there are two distinct forces

generating this result. First, (16) shows that the larger is q0, the greater is the impact

of any given limh→0
∂∆e1
∂h

, because the effort differential is more likely to be aligned with

the ability difference. Second, the larger is q0, the larger is limh→0
∂∆e1
∂h

itself, because in

period-1 both A’s “cost-saving incentive” for effort and B’s “cost-saving disincentive” are

stronger the more certain the agents are about which agent is better.

This comparative statics result in Proposition 3 provides further insights about the

relevance of luck for selection:

Corollary 3 (Persistence amplified) When agents have private information about their

relative abilities, luck is made even more persistent than when agents are uninformed, i.e.

P ∗
0 (q

0) = G(β∗
0(q

0)) > P ∗
0 for all q0 > 1

2
. The persistence of luck is increasing in the

agents’ informational advantage relative to the principal, i.e. P ∗
0 (q

0) is increasing.

Corollary 3 emphasizes that making luck persistent can be understood as an organiza-

tional response to an informational friction. Organizations employ bias for selection even

in extremely noisy environments not only because they know little about agents’ relative

abilities but also because they know less than agents themselves. Moreover, because with

uninformed agents the persistence of luck takes the same value as in the hypothetical sit-

uation where agents cannot influence their performance through effort, Corollary 3 relates

our theory to an ongoing discussion of what constitutes “merit” (Sen, 2000). Inherited

unique but is not necessary for this result.

20



talents, acquired abilities, and costly noble acts are all potential sources of merit, en-

dowing its possessor with a justification for receiving decision-making power or economic

prosperity. Our theory allows us to distinguish between the case where performance—or

merit—is given by the (noisy) sum of an agent’s ability and effort, and the case where only

ability matters. Section 3 showed that whether or not effort is included in the definition of

merit is irrelevant for the outcome of organizational selection when agents are uninformed

about their relative abilities. However, Proposition 3 and its corollary suggest that with

informed agents, organizational selection becomes more biased when merit depends not

only on ability but also on efforts. Perhaps surprisingly, when viewed from this angle, our

theory thus predicts a greater relevance of luck for selection in situations where agents

carry a greater “responsibility” for their performance.

5 Societal luck

Our theory highlights the relevance of early career luck for an individual’s long-term

success and explains how it arises from an organizational talent selection problem. In our

analysis so far, “luck” derives from the inherent noisiness of individual performance. We

have abstracted from other factors that could impact relative performance comparisons

such as the luck of possessing the “right identity” in the form of gender, race, ethnic

origin, or socioeconomic background. There exists evidence showing that individuals

with certain identities derive advantages during the early stages of their career that can

have long-lasting effects on social and economic outcomes.19 Conceptually, these forms

of “societal luck” are different from what we have considered so far in that actions might

condition on them. More specifically, agents’ incentives to exert effort might vary with

their identity, and organizations might want to reward good performance with biases that

depend on whether success was achieved with or without an initial advantage.

In this section, we analyze the impact of societal luck on our organizational selection

problem, by assuming that one agent i ∈ {A,B} obtains an exogenous additive advantage

of size α > 0 that augments the agent’s initial performance xi,1 but is uncorrelated

with ability. We emphasize the transitory nature of the exogenous advantage, which

distinguishes it from the agents’ ability. In line with our earlier analysis, we examine

under what conditions, and to what extent, organizational learning about abilities induces

the societal luck of receiving a transitory advantage to have a persistent effect on ultimate

19Ciocca Eller (2023) provides evidence that differences in educational achievement of students attend-
ing colleges of equal selectivity can be traced to heterogeneous socioeconomic backgrounds. Bukodi et al.
(2024) document the impact of “parental class” on the attainment of ultra-elite scientific status in the
UK.
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success, captured here as the probability of being selected.

For simplicity, our remaining analysis focuses on the case in which q0 = 1
2
.20 Without

loss of generality, we let agent A receive the advantage α, and we assume that this in-

formation is common knowledge. Under “identity-dependent (ID) biases”, the principal

can condition the bias βi granted to the winner of the first stage on the winner’s identity

i ∈ {A,B}, i.e. on whether or not the winning agent received an advantage. In con-

trast, under “identity-independent (II) bias”, the principal is required to set βA = βB.

Identity-independent bias might be a consequence of legislation aimed at preventing dis-

criminatory practices.21 Alternatively, there may be behavioral reasons why advantages

or disadvantages are not taken into account, even when they are known to exist.22

Given the exogenous advantage α and a bias regime (ID or II), agents choose efforts

optimally in response to the bias(es) they anticipate the principal will choose. For the by-

now familiar reasons, second-stage efforts are identical across agents, so we can focus on

the agents’ first-stage effort differential ∆e1 = eA,1 − eB,1. If ∆e1 > 0 (∆e1 < 0), agents’

strategic behavior augments (mitigates) the exogenous advantage. We define α̃ = α+∆e1

to be the net advantage of the advantaged agent. Under ID biases, agents’ optimization

results in ∆e1 = ∆e∗1(βA, βB) and hence α̃ = α + ∆e∗1(βA, βB). The analogous notation

under II bias is ∆e1 = ∆e∗1(β) and α̃ = α +∆e∗1(β).

Given α, the principal chooses bias(es) optimally in response to the unobservable yet

contemplated stage-1 effort differential and the corresponding net advantage α̃. Denote

the principal’s optimal choice of biases in the ID-regime by β∗
A(α̃) and β∗

B(α̃), and let

β∗(α̃) be her optimal II-bias. An equilibrium with ID biases is a combination of biases

and net advantage (βID
A , βID

B , α̃ID) that are mutual best responses, that is, βID
A = β∗

A(α̃
ID),

βID
B = β∗

B(α̃
ID), and α̃ID = α + ∆e∗1(β

ID
A , βID

B ). Similarly, an equilibrium with II bias is

a combination (βII , α̃II) satisfying βII = β∗(α̃II) and α̃II = α +∆e∗1(β
II). We use ∆eID1

and ∆eII1 to denote ∆e∗1(β
ID
A , βID

B ) and ∆e∗1(β
II), respectively.

20Our result in Corollary 4 on the persistence of societal luck generalizes to arbitrary q0, for small
values of the exogenous advantage.

21Title VII of the 1964 Civil Rights Act declares as “an unlawful employment practice [...] to discrimi-
nate against any individual because of his race, color, religion, sex, or national origin in admission to, or
employment in, any program established to provide apprenticeship or other training.”

22Exley and Nielsen (2024) document that evaluators correctly expect women to be less confident than
men in the assessment of their own abilities but fail themselves to account for this gender gap in their
evaluations. We will show that the optimal II bias becomes insensitive to the size of the exogenous
advantage α, for α small (i.e. limα→0

∂β∗

∂α = 0); hence for small α our analysis approximates the case
where an advantage exists but is neglected by the principal.
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For any given net advantage α̃, selective efficiency can be written as:

S(βA, βB, α̃) =
1

2
[G(λ1h+ α̃)G(λ2h+ βA) +G(−λ1h− α̃)G(λ2h− βB)] (17)

+
1

2
[G(λ1h− α̃)G(λ2h+ βB) +G(−λ1h+ α̃)G(λ2h− βA)].

The terms in the first (respectively, second) square brackets are the probability that the

better agent is selected conditional on being advantaged (respectively, disadvantaged).

The principal’s optimal identity-dependent biases β∗
A and β∗

B solve the first-order condi-

tions

G(λ1h+ α̃)

G(−λ1h+ α̃)
=

g(λ2h− β∗
A)

g(λ2h+ β∗
A)

and
G(λ1h− α̃)

G(−λ1h− α̃)
=

g(λ2h− β∗
B)

g(λ2h+ β∗
B)

. (18)

In the presence of societal luck, optimal ID biases equate the informativeness of a (hypo-

thetical) second-stage draw to the informativeness of a first-stage win, taking into account

that this informativeness depends on whether the stage-1 winner was advantaged or dis-

advantaged, and by how much, net of the induced effort differential. The log-concavity

of g implies that for any positive net advantage α̃ > 0, β∗
B(α̃) > β∗

A(α̃) > 0. This is

because a first-stage win against a net disadvantage is a stronger positive signal about

the winner’s ability than a first stage-win with the net advantage in the winner’s favor.

The principal’s optimal identity-independent bias β∗ solves ∂S
∂β

= 0 under the con-

straint that βA = βB = β:

G(λ1h+ α̃) +G(λ1h− α̃)

G(−λ1h+ α̃) +G(−λ1h− α̃)
=

g(λ2h− β∗)

g(λ2h+ β∗)
. (19)

The optimal II bias cannot be adjusted according to the “true” informativeness of the first

stage but only in accordance with its “average” informativeness: Given α̃, the principal

must set bias without conditioning on whether or not the first-stage winner was helped

or hindered by α̃. Consequently, for all α̃ > 0, the log-concavity of g implies that

β∗
B(α̃) > β∗(α̃) > β∗

A(α̃) > 0. (20)

Moreover, β∗(α̃) is strictly decreasing in α̃, and limα̃→0
∂β∗

∂α̃
= 0. These last two properties

hold because constraining the magnitude of the bias to be independent of whether the

stage-1 winner was advantaged or disadvantaged converts α̃, from the principal’s point of

view, into an unobservable binary, symmetric shock affecting the stage-1 outcome. The

larger this shock, the less informative is a stage-1 win, so the smaller is the optimal II
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bias; and as the magnitude of this shock tends to 0, it has only a second-order effect on

stage-1 informativeness, and hence only a second-order effect on optimal II bias.

We can now characterize and compare equilibrium stage-1 effort differentials:

Proposition 4 (Effort differentials with societal luck) Let q0 = 1
2
and suppose agent

A’s first-stage performance is augmented by α > 0.

(i) Both in the regime with identity-dependent biases and in that with identity-independent

bias, in equilibrium agent A exerts a lower stage-1 effort than agent B but maintains

a strict net advantage:

−α < ∆eII1 < 0 and − α < ∆eID1 < 0. (21)

(ii) If effort costs are Ct(ei,t) =
c
2
e2i,t, with c > 0 sufficiently large for equilibrium in both

bias regimes to be unique, and if ability difference h is sufficiently small, the net

advantage of agent A in the equilibrium under identity-dependent biases is strictly

less than A’s net advantage in the equilibrium under identity-independent bias:

α̃ID = α +∆eID1 < α+∆eII1 = α̃II . (22)

Similarly to Section 4, where the stage-1 competition was asymmetric due to q0 > 1
2
,

the difference inA’s andB’s stage-1 efforts arises exclusively from the impact of the stage-1

outcome on stage-2 effort costs. Because a net advantage α+∆e1 > 0 for agent A in stage 1

makes A more likely to win that stage, both the agents and the principal are less confident

in the first-stage winner’s ability when it is A compared to when it is B. Under II bias,

the agents will therefore expect the biased second-stage competition to be more balanced

and consequently more costly after a stage-1 win by A than after a stage-1 win by B. This

difference in stage-2 effort costs gives the advantaged agent, A, a weaker incentive than

his rival to exert stage-1 effort, resulting in ∆e1 < 0. Identity-dependent biases augment

this “future effort-cost effect”, reducing the induced ∆e1 further below zero, because the

principal will optimally choose βA < βB for any anticipated α +∆e1 > 0. As long as the

ability difference h is not too large, a reduction in βA makes stage-2 competition even

more balanced following a win by A, and an increase in βB makes stage-2 competition

even less balanced following a win by B.23

Note that, due to the inability to commit to the bias(es), the principal might not

do better in the ID case. Yet, Proposition 4(ii) implies that selective efficiency is always

23The assumption of quadratic costs allows us to compare the agents’ stage-1 effort differential across
the two regimes by focusing on the size of the difference in their marginal benefits of effort.
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higher under ID biases than under II bias. Agents’ strategic behavior augments the direct

benefit for selective efficiency (for any given α̃) of the principal’s ability to condition biases

on the identity of the first-stage winner.24

Our main interest, however, is in the comparison of the persistence of societal luck,

Pα, across these two equilibria. The probability Pα that the initially advantaged agent

is ultimately selected depends on the principal’s choice of biases (βA, βB) and on the

endogenous net advantage α̃ = α +∆e1 as follows:

Pα(βA, βB, α̃) =
1

2

∑
∆a

[G(λ1∆a+ α̃)G(λ2∆a+ βA) +G(−λ1∆a− α̃)G(λ2∆a− βB)]. (23)

For each possible value of the ability difference ∆a ∈ {−h, h}, the first term in the sum

in square brackets in (23) is the probability that the advantaged agent wins both stages,

while the second term is the probability that this agent loses stage 1 but wins stage 2.

Under identity-independent bias, the effect of a randomly assigned advantage α is

always persistent, that is, Pα(β
II , βII , α +∆eII1 ) > 1

2
. This is because, for βA = βB = β,

Pα(β, β, α̃) can be expressed as

Pα(β, β, α̃) =
1

2
{1 + [G(λ1h+ α̃)−G(λ1h− α̃)][G(λ2h+ β)−G(λ2h− β)]} , (24)

and in equilibrium, both the advantaged agent’s net advantage, α̃II = α+∆eII1 , and the

principal’s choice of bias, βII , are strictly positive, as shown by Proposition 4 and (20).

Intuitively, the advantaged agent is selected with higher probability than his rival, because

he is more likely to win the first stage (despite his lower effort), and the second stage is

biased by the same amount, no matter the identity of the first-stage winner. When the

II bias β is chosen optimally given α̃, Pα in (24) is strictly increasing in α̃ at α̃ = 0 since

at α̃ = 0, ∂β∗

∂α̃
= 0, as explained above. Moreover, Pα is typically hump-shaped in α̃.

In striking contrast, allowing biases to be identity-dependent may completely elimi-

nate the persistence of societal luck. For example, we can show that, when the difference

in agents’ noise terms has a logistic distribution, then Pα(β
ID
A , βID

B , α + ∆eID1 ) = 1
2
for

all values of exogenous advantage α > 0. The following corollary to Proposition 4 pro-

vides a general comparison of the persistence of societal luck between the equilibria under

identity-independent and identity-dependent biases. It also compares the expected util-

ity differential ∆U between the advantaged and the disadvantaged agent across these

24This result follows because, under II bias, maximized selective efficiency is decreasing in net advan-
tage, by the envelope theorem.
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equilibria:

∆U(βA, βB, α+∆e1) ≡ [2Pα(βA, βB, α+∆e1)− 1]− [C(eA,1)− C(eB,1)]. (25)

Corollary 4 (Persistence of societal luck) Under the assumptions of Proposition 4

(ii) and for small headstarts α, allowing bias to be identity-dependent

(i) reduces the persistence of societal luck:

Pα(β
ID
A , βID

B , α+∆eID1 ) < Pα(β
II , βII , α+∆eII1 ) (26)

(ii) reduces the expected utility differential between the advantaged and the disadvantaged

agent:

∆U(βID
A , βID

B , α+∆eID1 ) < ∆U(βII
A , βII

B , α+∆eII1 ). (27)

We stress that there are two distinct drivers of the reduction in the persistence of

societal luck when biases are allowed to be identity-dependent. For any given net ad-

vantage α̃, persistence is reduced because β∗
A(α̃) < β∗(α̃) < β∗

B(α̃), and Pα in (23) is

increasing in βA and decreasing in βB. This reduction in persistence reflects the fact that

ID biases, compared to II bias, effectively penalize in stage 2 the agent who benefited

from the advantage in stage 1, independently of the stage-1 outcome.

The second driver behind the reduced persistence under identity-dependent biases is

the strategic response of the agents themselves. Because identity-dependent biases induce

the advantaged agent to reduce stage-1 effort relative to his rival even more than when

bias is identity-independent, as shown by Proposition 4, this generates a further reduction

in the persistence of societal luck, as long as α is sufficiently small for Pα in (24) to still

be increasing in α̃.25

The second part of Corollary 4 shows that, for small values of exogenous advantage,

allowing for identity-dependent biases lowers the persistence of societal luck by so much

that the disadvantaged agent benefits in relative terms, despite his equilibrium effort costs

rising relative to those of his rival.

Roemer (2000) advocates that an equal-opportunity principle should be applied at the

entry level of careers, e.g. for admissions to medical school, while a non-discrimination

25The mitigating effect of agents’ strategic behavior on persistence emerges here with ordinal perfor-
mance comparisons. In contrast, if cardinal information were available and identity-dependent biases were
allowed, the principal could completely filter out the contribution of α, the unique equilibrium stage-1
effort differential would be 0, and the advantaged agent would be no more likely to be selected than his
rival.
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principle should govern the selection for final positions, such as the licensing of surgeons.

Proposition 4 shows that the application of a non-discrimination principle in the selec-

tion for positions can backfire, by propagating disadvantages stemming from a failure to

establish equal opportunity. In particular, Corollary 4 suggests that the use of identity-

dependent biases for selection can help to reduce, if not eliminate, the persistent effects

of disadvantages individuals experience during the early stages of their careers. This is

accomplished by rewarding early strong performance with larger biases, e.g. in the form

of larger grants or swifter fast-tracks, when early success was achieved in spite of disad-

vantages; the benefits of this policy are further amplified by agents’ strategic responses.

6 Conclusion

When the careers of professional hockey players or CEOs are kick-started by the proximity

of their birthday to a cut-off or when hedge funds or venture capitalists persistently

outperform the market following a fortunate initial investment, luck seems to play an

unjustified role in the selection of the most gifted. Such findings and related anecdotes

play into the hands of recent critics of a meritocratic worldview (e.g. Piketty, 2014; Sandel,

2020), which, in spite of forming the basis of modern democratic societies, is claimed to

be a myth, used as a justification for their exorbitant degrees of economic and social

inequality. The main contribution of this paper is to show that making initial luck have

a persistent effect on selection is consistent with—if not a necessary feature of—a society

aiming to allocate resources and decision-making power to the most able individuals.

Our theory thus illuminates a basic mechanism behind inequality by rationalizing

the persistence of luck as an equilibrium outcome of the strategic interaction between

an organization aiming to maximize selective efficiency and a group of heterogeneous

agents capable of influencing their likelihood of becoming selected through costly efforts.

We have characterized the scenarios where the role of initial luck can be expected to be

most amplified. This happens when agents are informed about their relative abilities and

the organization is restricted to use ordinal rather than cardinal performance information.

Both conditions seem more likely to be met towards the top of an organizations hierarchy,

which means that we have identified luck as a determinant of selection where, arguably,

selection matters most, both, for the organization’s payoff and for the induced inequality

amongst agents.

We have also analyzed the contribution of organizational learning to the persistence

of a different type of luck, “societal luck”, reflecting initial advantages that some indi-

viduals derive from their identities, e.g. their race or gender. We have shown that non-

27



discrimination laws that restrict organizational learning may backfire by making advan-

tages or disadvantages stemming from unequal opportunities have longer-lasting effects,

especially when individuals strategically react to such policies.

Appendix

Proof of Lemmas 1 and 2

Use superscripts w and l, respectively, to distinguish the cases where agent A won and

lost the first stage. Define ∆e1 = eA,1 − eB,1, ∆ew2 = ewA,2 − ewB,2, and ∆el2 = elA,2 − elB,2.

Let qw(∆e1, q
0) and ql(∆e1, q

0) denote the posterior probabilities that the winner of the

first stage is the more able agent, given q0 and ∆e1. When there is no risk of confusion,

we suppress the arguments of the posteriors.

We first show that agents exert identical effort in the second stage and that this holds

independently of q0 and ∆e1. In case w, A’s and B’s first-order conditions determining

second-stage efforts are:

C ′
2(e

w
A,2) = qwg (h+ β +∆ew2 ) + (1− qw)g (−h+ β +∆ew2 ) (28)

C ′
2(e

w
B,2) = qwg (−h− β −∆ew2 ) + (1− qw)g (h− β −∆ew2 ) . (29)

By the symmetry of g, the marginal returns to effort are identical, so ewA,2 = ewB,2. An

analogous argument for case l shows that elA,2 = elB,2.

Now consider the agents’ incentives for stage-1 effort. We can write the overall utility

of agent A as follows:

−C1(eA,1) + q0{G (λ1h+∆e1)
[
G (λ2h+ β +∆ew2 )− C2

(
ewA,2

)]
(30)

+ [1−G (λ1h+∆e1)]
[
G
(
λ2h− β +∆el2

)
− C2

(
elA,2

)]
}

+ (1− q0){G (−λ1h+∆e1)
[
G (−λ2h+ β +∆ew2 )− C2

(
ewA,2

)]
+ [1−G (−λ1h+∆e1)]

[
G
(
−λ2h− β +∆el2

)
− C2

(
elA,2

)]
}.

A change in eA,1 does not affect ewB,2, e
l
B,2, or β, because it is unobservable, and the local

effect via the induced changes in ewA,2 and elA,2 is zero by the envelope theorem. Using

∆ew2 = ∆el2 = 0 and the symmetry of g around 0, the first-order condition for eA,1 can be

written as

C ′
1(eA,1) =

[
q0g (λ1h+∆e1) + (1− q0)g (−λ1h+∆e1)

]
(31)

·
{
[G (λ2h+ β)−G (λ2h− β)]−

[
C2 (e

w
2 )− C2

(
el2
)]}
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Analogously, for agent B the first-order condition for eB,1 can be written as

C ′(eB,1) =
[
(1− q0)g (λ1h−∆e1) + q0g (−λ1h−∆e1)

]
(32)

·
{
[G (λ2h+ β)−G (λ2h− β)] +

[
C2 (e

w
2 )− C2

(
el2
)]}

Again using the symmetry of g, and noting that the component of the marginal benefit

of stage-1 effort stemming from the enhanced probability of selection is identical for the

two agents, when we subtract (32) from (31), we get

C ′(eA,1)− C ′(eB,1)

C(el2)− C(ew2 )
= 2

[
q0g (λ1h+∆e1) + (1− q0)g (−λ1h+∆e1)

]
(33)

Given that costs are strictly increasing and strictly convex, we conclude that in equilib-

rium, ∆e1 = eA,1 − eB,1 and el2 − ew2 must have the same sign.

To determine the sign of el2 − ew2 , compare agent A’s first-order conditions for stage-2

effort, after a stage-1 win by A vs. after a stage-1 loss by A, respectively:

C ′(ew2 ) = qw(∆e1, q
0)g(λ2h+ β) + (1− qw(∆e1, q

0))g(−λ2h+ β), (34)

C ′(el2) = ql(∆e1, q
0)g(−λ2h− β) + (1− ql(∆e1, q

0))g(λ2h− β). (35)

Subtracting the second FOC from the first, and using the symmetry of g, gives

C ′(ew2 )− C ′(el2) = [qw(∆e1, q
0)− ql(∆e1, q

0)][g(λ2h+ β)− g(−λ2h+ β)]. (36)

The strict log-concavity and symmetry of g imply that for any β > 0, g(λ2h + β) −
g(−λ2h+ β) < 0, while for β = 0, g(λ2h+ β)− g(−λ2h+ β) = 0. Hence, since costs are

strictly convex,

el2 − ew2 ≷ 0 ⇐⇒ qw(∆e1, q
0)− ql(∆e1, q

0) ≷ 0. (37)

The posterior beliefs qw(∆e1, q
0) and ql(∆e1, q

0) are given by

qw(∆e1, q
0) =

q0G(λ1h+∆e1)

q0G(λ1h+∆e1) + (1− q0)G(−λ1h+∆e1)
, (38)

ql(∆e1, q
0) =

(1− q0)G(λ1h−∆e1)

(1− q0)G(λ1h−∆e1) + q0G(−λ1h−∆e1)
(39)

Observe that qw and ql are, respectively, strictly decreasing and strictly increasing in ∆e1.

For q0 = 1
2
, they are equal at ∆e1 = 0, while for q0 > 1

2
, they are equal at some ∆e1 > 0.
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We are now in a position to complete the proof of Lemma 1. Let q0 = 1
2
. Assume

first that agents anticipate a bias β = 0. Then from (36), el2 = ew2 . Hence, as shown by

the right-hand sides of (31) and (32), at any value of ∆e1, the marginal benefit of stage-1

effort is 0 for both agents, so the unique equilibrium stage-1 efforts are eA,1 = eB,1 = 0.

Now let agents anticipate a bias β > 0. Suppose, for contradiction, that ∆e1 > 0. Then

qw(∆e1, q
0) − ql(∆e1, q

0) < 0, so by (37), el2 < ew2 . In turn, this implies, using (33), that

∆e1 < 0, which is a contradiction. Analogously, assuming that ∆e1 < 0 would also lead to

a contradiction. Hence, equilibrium requires equal first-stage efforts: eA,1 = eB,1. These

are unique since with ∆e1 = 0, the right-hand sides of (31) and (32) are independent of

the common level of e1.

To complete the proof of Lemma 2, we need to show that for any q0 > 1
2
and any

β > 0, equilibrium entails eA,1 − eB,1 > 0. Suppose, for contradiction, that ∆e1 ≤ 0.

Then from (38) and (39), qw(∆e1, q
0)− ql(∆e1, q

0) > 0, because the agents’ prior is that

A is more able and a stage-1 win by A despite an effort disadvantage is per se a stronger

signal of ability than a stage-1 win by B with an effort advantage. By (37), it follows that

el2 > ew2 . In turn, this implies, using (33), that ∆e1 > 0, which is a contradiction.

Proof of Proposition 1

Equilibrium bias maximizes selective efficiency, S(β;h), which for q0 =
1
2
by Lemma 1 is

given by (3). We use sub-indices to denote partial derivatives. For any h > 0, Assumption

1 ensures that the first-order condition Sβ(β;h) = 0 uniquely determines the optimal bias

β∗(h):

Sβ(β
∗(h);h) = G (λ1h) g (λ2h+ β∗(h))− [1−G (λ1h)] g (λ2h− β∗(h)) = 0.

To see that β∗(h) > 0 for all h > 0 note that G(λ1h) > 1 − G(λ1h). However,

limh→0 Sβ(β, h) = 0 ∀β. Characterizing β∗
0 ≡ limh→0 β

∗(h) thus requires totally differ-

entiating Sβ(β
∗(h);h) with respect to h, setting it equal to 0, and letting h → 0. Total

differentiation yields

d

dh
Sβ(β

∗(h);h) = Sβh(β
∗(h);h) + Sββ(β

∗(h);h)
∂β∗(h)

∂h
, (40)

where limh→0 Sββ(β;h) = 0 ∀β (since limh→0 Sβ(β;h) = 0 ∀β). Hence, (40) and Assump-

tion 1(i) imply that β∗
0 solves

lim
h→0

Sβh(β
∗(h);h) = Sβh(β

∗
0 , 0) = 2λ1g(0)g(β

∗
0) + λ2g

′(β∗
0) = 0, (41)

30



which gives (5). Since Assumptions 1(i) and 1(iii) guarantee that L(0) = 0 and that L is

strictly increasing, it follows that β∗
0 > 0.

Proof of Proposition 2

To abbreviate notation we let k = |∆x1| ≥ 0 denote the observed first-stage margin of

victory.

Part (i) Having observed the margin of victory, k, the principal chooses β to maximize

the objective in (8), and the first-order condition is

Scard
β (β, k;h) = g(k − λ1h)g(λ2h+ β)− g(k + λ1h)g(λ2h− β) = 0. (42)

By Assumption 1, (42) uniquely determines the optimal cardinal bias βcard(k, h) as a

strictly increasing function of k, equal to zero for k = 0. Since limh→0 S
card
β (β, k;h) =

0 ∀β, k, characterizing βcard
0 (k) ≡ limh→0 β

card(k, h) requires totally differentiating the

value Scard
β (βcard(k, h), k;h) with respect to h, setting it equal to zero, and letting h → 0.

Doing so shows that βcard
0 (k) solves limh→0 S

card
βh (β, k;h) = 0, which yields

L(βcard
0 (k)) =

λ1

λ2

L(k),

which is equation (9). By Assumption 1, L(0) = 0 and L(k) > 0 ∀k > 0. Hence,

βcard
0 (k) > 0 ∀k > 0.

Part (ii) Given (5) and (9), we need only show that E[L(k)] = 2g(0). As h → 0, the

density of k converges to 2g(k) on support [0, z]. Hence

E[L(k)] =
∫ z

0

L(k)2g(k)dk = −2

∫ z

0

g′(k)dk = 2g(0),

using g(z) = 0, which is implied by Assumption 1(iii).

Proof of Corollary 2

Part (i) When L(·) is convex, (10) implies that β∗
0 ≥ E[βcard

0 (k)] and hence

G(β∗
0) ≥ G(E[βcard

0 (k)]), (43)

since G(·) is strictly increasing. Strict log-concavity and symmetry of g(·) imply that G(·)
is strictly concave on the positive domain, so

G(E[βcard
0 (k)]) > E[G(βcard

0 (k))]. (44)
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Inequalities (43) and(44) together imply (13).

Part (ii) Whichever type of information, ordinal or cardinal, is used, and given the

ex ante symmetry of the selection process with respect to agents A and B, the limiting

value of persistence as h → 0 can be expressed as

2P(select A,∆ϵ1 > 0) (45)

= 2 [P(select A,∆ϵ1 > 0,∆ϵ2 > 0) + P(select A,∆ϵ1 > 0,∆ϵ2 < 0)]

=
1

2
[P(select A |∆ϵ1 > 0,∆ϵ2 > 0) + P(select A |∆ϵ1 > 0,∆ϵ2 < 0)] ,

where we have used the fact that P(∆ϵ1 > 0,∆ϵ2 > 0) = P(∆ϵ1 > 0,∆ϵ2 < 0) = 1
4
. Since

P(select A |∆ϵ1 > 0,∆ϵ2 > 0, ord.) = P(select A |∆ϵ1 > 0,∆ϵ2 > 0, card.) = 1, (46)

it follows that P ∗
0 > P card

0 if and only if

P(select A |∆ϵ1 > 0,∆ϵ2 < 0, ord.) > P(select A |∆ϵ1 > 0,∆ϵ2 < 0, card.). (47)

Whether ordinal or cardinal information is used, the ex ante symmetry of the selection

process with respect to A and B means that the ex ante probability of selecting A is 1
2
.

Using the first equality in (46), and the trivial fact that

P(select A |∆ϵ1 < 0,∆ϵ2 < 0, ord.) = P(select A |∆ϵ1 < 0,∆ϵ2 < 0, card.) = 0, (48)

it thus has to hold that

P(select A |∆ϵ1 > 0,∆ϵ2 < 0, ord.) + P(select A |∆ϵ1 < 0,∆ϵ2 > 0, ord.) (49)

= P(select A |∆ϵ1 > 0,∆ϵ2 < 0, card.) + P(select A |∆ϵ1 < 0,∆ϵ2 > 0, card.)

Using (49), it is then straightforward to confirm that (47) holds if and only if (14) is

satisfied.

Proof of Proposition 3

In the limit as h → 0, (36) implies that ew2 − el2 → 0, since agents’ posterior beliefs about

their relative ability become irrelevant to their stage-2 effort incentives. The stage-1 effort

differential ∆e1 = eA,1 − eB,1 therefore approaches 0 as h → 0, since the right-hand sides

of (31) and (32) become equal.

Using this result, we now characterize the principal’s optimal choice of bias, for any
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anticipated stage-1 effort differential ∆e1. The principal chooses β to maximize selective

efficiency S(β, h, q0), where

S(β;h, q0) = [q0G(λ1h+∆e1) + (1− q0)G(λ1h−∆e1)]G(λ2h+ β) (50)

+ [q0G(−λ1h−∆e1) + (1− q0)G(−λ1h+∆e1)]G(λ2h− β).

The first-order condition for β is

Sβ(β;h, q
0) = [q0G(λ1h+∆e1) + (1− q0)G(λ1h−∆e1)]g(λ2h+ β) (51)

− [q0(1−G(λ1h+∆e1)) + (1− q0)(1−G(λ1h−∆e1))]g(λ2h− β) = 0.

Since limh→0∆e1 = 0, limh→0 Sβ(β;h, q
0) = 0 for all β. As in the proof of Proposition

1, characterizing the optimal bias β∗(h) in the limit as h → 0 thus requires totally

differentiating Sβ(β
∗(h), h, q0) with respect to h, setting it equal to 0, and letting h → 0.

Since limh→0 Sβ(β;h, q
0) = 0 for all β, limh→0 Sββ(β;h, q

0) for all β. Hence the limiting

optimal bias as h → 0, β∗
0 , solves the first-order condition

0 = lim
h→0

Sβh(β
∗(h);h, q0) = Sβh(β

∗
0 ; 0, q

0) (52)

= 2g(0)g(β∗
0)

[
λ1 + (2q0 − 1)

∂∆e1
∂h

∣∣∣∣∣h → 0

]
+ λ2g

′(β∗
0).

To complete the characterization of equilibrium in the limit as h → 0, we must

determine how the limiting derivative with respect to h of the agents’ best-response effort

differential, limh→0
∂∆e1
∂h

, depends on their anticipations about the principal’s choice of β.

The derivation of limh→0
∂∆e1
∂h

is simplified by the following observation, which is based

on a symmetry argument: limh→0
∂β∗(h)

∂h
= 0.

To show that limh→0
∂β∗(h)

∂h
= 0, we begin by observing that since limh→0 β

∗(h) solves

the first-order condition limh→0 Sβh = 0, the sign of limh→0
∂β∗(h)

∂h
= 0 will be determined

by the sign of limh→0 Sβhh(β
∗(h);h, q0). We will show that limh→0 Shh(β;h, q

0) = 0 for all

β, q0, from which it follows that limh→0 Sβhh(β
∗(h);h, q0) = 0 for all β, q0 and therefore

limh→0
∂β∗(h)

∂h
= 0.

To prove that limh→0 Shh(β;h, q
0) = 0 for all β, q0, we will show that, for any β,

S(β;h, q0), regarded as a function of h ∈ ℜ, displays 180◦ rotational symmetry around the

point (h = 0, S = 1
2
), that is, S(β;h, q0) = 1−S(β;−h, q0). To interpret the mathematical

expression S(β;−h, q0), temporarily set ∆e1 = 0; S(β;−h, q0) then gives the probability

of selecting the more able agent when the principal assigns bias β in favor of the stage-1

loser. In such a setting, the endogenous stage-1 effort differential would switch sign, that
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is, ∆e1(−h) = −∆e1(h), as can be seen from (33) and (36). Using ∆e1(−h) = −∆e1(h),

we have

S(β;−h, q0) = [q0G(λ1h+∆e1(h)) + (1− q0)G(λ1h−∆e1(h))]G(−λ2h− β) (53)

+ [q0G(−λ1h−∆e1(h)) + (1− q0)G(−λ1h+∆e1(h))]G(−λ2h+ β).

It follows from (53) and (50) that for all h, β, q0, S(β;h, q0) = 1−S(β;−h, q0). Differenti-

ating this identity twice with respect to h and letting h → 0 then yields limh→0 Shh(β;h, q
0) =

0 for all β, q0.

Having established that limh→0
∂β∗(h)

∂h
= 0, we now return to the analysis of how

limh→0
∂∆e1
∂h

depends on agents’ anticipations about the principal’s choice of β. Differen-

tiating the agents’ first-order conditions for stage-1 effort, (31) and (32), with respect to

h, letting h → 0, and using limh→0
∂β∗(h)

∂h
= 0, yields

C ′′
1 (e0)

[
∂eA,1

∂h
− ∂eB,1

∂h

]
= −4λ2g(0)X

′(g(β))g′(β)(2q0 − 1), (54)

where e0 is the agents’ common limiting period-1 effort, given β, which solves C ′
1(e0) =

g(0)[2G(β) − 1], and the function X(·) ≡ C2((C
′
2)

−1(·). Note that e0 is independent of

q0 and that strict convexity of C2(·) ensures that X(·) is strictly increasing. For any

anticipated β > 0 and any q0 > 1
2
, the right-hand side of (54) is strictly positive, so

limh→0
∂∆e1
∂h

> 0.

An equilibrium value of β as h → 0, β∗
0 , solves the fixed-point equation derived from

(52), recognizing the dependence of limh→0
∂∆e1
∂h

on β0:

2g(0)

[
λ1 + (2q0 − 1)

∂∆e1(β
∗
0 ; 0, q

0)

∂h

]
= λ2L(β

∗
0). (55)

Since limh→0
∂∆e1
∂h

> 0 for all β > 0, q0 > 1
2
, the left-hand size of (55) is strictly positive,

so any fixed point β∗
0 must be strictly positive. To show that the fixed point is unique,

use (54) to substitute for ∂∆e1(β0;0,q0)
∂h

in (55). This yields, after rearrangement,

2λ1g(0) = λ2L(β
∗
0)

[
1− 8(g(0))2

C ′′(e0)
X ′(g(β∗

0))g(β
∗
0)(2q

0 − 1)2
]
. (56)

For Ct(ei,t) =
ct
2
e2i,t, C

′′
1 (e0) is a constant, and X ′(·) is linear, so the expression in square

brackets on the right-hand side of (56) is strictly increasing in β0. For quadratic costs,

therefore, the right-hand side of (56) is strictly increasing in β0 whenever the expression

in square brackets is positive. Since the left-hand side of (56) is strictly positive, there
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is a unique equilibrium value β∗
0 . Finally, since the right-hand side of (56) is strictly

decreasing in q0 for all β0 > 0, the equilibrium β∗
0 is increasing in q0.

Proof of Proposition 4

We first derive properties of the principal’s optimal bias, given her belief (correct in

equilibrium) about the agents’ effort differential and the corresponding net advantage α̃.

First note that, given net advantage α̃, the principal’s optimal biases β∗
A(α̃), β

∗
B(α̃), and

β∗(α̃) are strictly positive. This is because the left hand sides of the first-order conditions

(18) and (19) are strictly larger than one, while the right hand sides are equal to one

when bias is zero and strictly increasing in bias by the log-concavity of g. Moreover,

β∗
A(α̃) < β∗(α̃) < β∗

B(α̃) for α̃ > 0 because the principal’s “confidence” in the first-

stage winner’s ability is strictly decreasing in the net advantage the first-stage winner has

benefited from, i.e.

G(λ1h+ α̃)

G(−λ1h+ α̃)
>

G(λ1h+ α̃) +G(λ1h− α̃)

G(−λ1h+ α̃) +G(−λ1h− α̃)
>

G(λ1h− α̃)

G(−λ1h− α̃)
. (57)

For the same reason, β∗
A(α̃) and β∗(α̃) are strictly decreasing whereas β∗

B(α̃) is strictly

increasing. As all three terms in (57) converge to G(λ1h)
G(−λ1h)

for α̃ → 0, it holds that

limα→0 β
ID
A = limα→0 β

ID
B = limα→0 β

II . Finally, differentiating the left hand side of (19)

with respect to α̃ gives

2[g(λ1h+ α̃)− g(λ1h− α̃)]

[G(−λ1h+ α̃) +G(−λ1h− α̃)]2
, (58)

which converges to zero for α → 0, proving that limα̃→0
∂β∗

∂α̃
= 0. And since the first-

order conditions (18) determining optimal identity-dependent biases are identical except

for the sign of α̃, it has to hold that limα̃→0
∂β∗

A

∂α̃
= − limα̃→0

∂β∗
B

∂α̃
. Having established the

properties of the principal’s optimal bias response we can now turn our attention to the

Proposition’s claims about agents’ first-stage effort differential.

Part (i) The proof of this claim treats jointly the cases of identity-dependent and

identity-independent bias, for the latter simply impose βA = βB = β and all arguments

go through for all β > 0. In the second stage, agent A’s effort equals agent B’s effort.

The proof of this claim is analog to Lemma 1 and will thus be skipped. Let ew2 and el2

denote the agents’ (identical) second-stage efforts after the advantaged agent A won or
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lost the first stage, respectively. Agent A’s expected utility in stage one is then given by

−C(eA,1) +
1

2

∑
∆a∈{−h,h}

{G(λ1∆a+ α +∆e1)[G(λ2∆a+ βA)− C(ew2 )] (59)

+G(−λ1∆a− α−∆e1)[G(λ2∆a− βB)− C(el2)]},

and the corresponding first order condition is

2C ′(eA,1) =
∑
∆a

g(λ1∆a+ α +∆e1)[G(λ2∆a+ βA)−G(λ2∆a− βB) + C(el2)− C(ew2 )](60)

Similarly, for agent B we get

2C ′(eB,1) =
∑
∆a

g(λ1∆a+ α +∆e1)[G(−λ2∆a+ βB)−G(−λ2∆a− βA) + C(ew2 )− C(el2)]

Comparing the marginal benefits of effort across agents it follows from G(x) = 1−G(x)

that those parts stemming from the enhanced probability of selection are identical and

subtraction of the two equations yields:

C ′(eA,1)− C ′(eB,1)

C(el2)− C(ew2 )
=

∑
∆a∈{−h,h}

g(λ1∆a+ α +∆e1). (61)

Given that costs are increasing and convex, in equilibrium, ∆e1 = eA,1 − eB,1 and el2 − ew2

have to have the same sign. To determine the latter, consider the advantaged agent A’s

expected utility in the second stage, separately for the two cases where the advantaged

agent won (w) or lost (l) the first stage, respectively:

qwG(λ2h+ βA +∆ew2 ) + (1− qw)G(−λ2h+ βA +∆ew2 )− C(ewA,2), (62)

qlG(−λ2h− βB +∆ew2 ) + (1− ql)G(λ2h− βB +∆ew2 )− C(ewA,2). (63)

Here we have introduced

qw =
G(λ1h+ α +∆e1)

G(λ1h+ α +∆e1) +G(−λ1h+ α +∆e1)
, (64)

ql =
G(λ1h− α−∆e1)

G(λ1h− α−∆e1) +G(−λ1h− α−∆e1)
(65)

to denote the updated probabilities that the winner of the first-stage constitutes the more
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able agent. The corresponding first order conditions determining ew2 and el2 are given by:

C ′(ew2 ) = qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA), (66)

C ′(el2) = qlg(−λ2h− βB) + (1− ql)g(λ2h− βB). (67)

Note that qw and ql are decreasing, respectively, increasing functions of the advantaged

agent’s net advantage and that

ql > qw ⇔ α +∆e1 > 0. (68)

Also note that, as we argued above, with identity-dependent biases, the principal awards

a larger bias when she is more certain that the first-stage winner constitutes the more

able agent, that is, in equilibrium βA − βB and qw − ql have to have the same sign.

We now argue, by contradiction, that −α < ∆e1 < 0. Suppose, instead, that, ∆e1 ≤
−α. Then α+∆e1 ≤ 0 implies that ql ≤ qw and thus βA ≥ βB. (For identity-independent

bias, this condition holds trivially.) We have, for all β ∈ (0, βA]:

qw

1− qw
=

g(λ2h− βA)

g(λ2h+ βA)
≥ g(λ2h− β)

g(λ2h+ β)
>

g′(λ2h− β)

g′(λ2h+ β)
= −g′(−λ2h+ β)

g′(λ2h+ β)
(69)

where the first equality is the principal’s first-order condition for βA, the two inequalities

follow from β ∈ (0, βA] and the strict log-concavity of g, and the second equality holds

because g is symmetric. Hence, for β ∈ (0, βA]:

qwg′(λ2h+ β) + (1− qw)g′(−λ2h+ β) < 0 (70)

and therefore

qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA) ≤ qwg(λ2h+ βB) + (1− qw)g(−λ2h+ βB) (71)

with strict inequality if βB < βA. Since βB > 0 and, under the hypothesis, ql ≤ qw, the

right hand side of (71) is less than or equal to qlg(λ2h + βB) + (1 − ql)g(−λ2h + βB).

Hence (66) and (67) imply that C ′(ew2 ) ≤ C ′(el2) and by the convexity of C it follows that

ew2 ≤ el2. As in equilibrium, ∆e1 has to have the same sign as el2 − ew2 ≥ 0 we obtain a

contradiction to our assumption that ∆e1 ≤ −α < 0.

Similarly, if ∆e1 ≥ 0 then it follows from α+∆e1 > 0 that ql > qw, so βB > βA. Now
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we have, for all β ∈ (0, βB):

ql

1− ql
=

g(λ2h− βB)

g(λ2h+ βB)
>

g(λ2h− β)

g(λ2h+ β)
>

g′(λ2h− β)

g′(λ2h+ β)
= −g′(−λ2h+ β)

g′(λ2h+ β)
, (72)

and thus

qlg′(λ2h+ β) + (1− ql)g′(−λ2h+ β) < 0. (73)

Hence, since βB > βA > 0,

qlg(λ2h+ βB) + (1− ql)g(−λ2h+ βB) < qlg(λ2h+ βA) + (1− ql)g(−λ2h+ βA) (74)

which is strictly smaller than qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA) because q
l > qw. So

it follows from (66) and (67) that C ′(ew2 ) > C ′(el2) and thus ew2 > el2. As in equilibrium,

∆e1 has to have the same sign as el2−ew2 < 0 we obtain a contradiction to our assumption

that ∆e1 ≥ 0.

Part (ii) Let (βII ,∆eII1 ) and (βID
A , βID

B ,∆eID1 ) denote the unique equilibrium with

identity-independent and identity-dependent biases, respectively. Assume that h is suf-

ficiently small such that −λ2h + βID
A ≥ 0. Choosing h like that is possible because, by

analogy to Proposition 1, it holds that limh→0 β
ID
A > 0. We now show that

∆eID1 < ∆eII1 . (75)

By contradiction, assume that ∆eID1 ≥ ∆eII1 . Starting from (βID
A , βID

B ,∆eID1 ) suppose

the principal is restricted to use identity-independent bias, resulting in the choice β̂ =

β∗(α+∆eID1 ). Consider the agents’ corresponding effort response ∆e∗1(β̂, β̂). As costs are

quadratic it follows from (61) that the agents’ first-stage effort-differential satisfies the

implicit equation

c∆e1 − [C(el2)− C(ew2 )]
∑

∆a∈{−h,h}

g(λ1∆a+ α +∆e1) = 0, (76)

with

C(el2)− C(ew2 ) =
1

c
[qlg(−λ2h− βB) + (1− ql)g(λ2h− βB)]

2 (77)

− 1

c
[qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA)]

2.

Because βID
A < β∗(α + ∆eID1 ) < βID

B as shown above, the move from βA = βID
A and
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βB = βID
B to βA = βB = β∗(α+∆eID1 ) decreases g(λ2h+ βA) and increases g(−λ2h− βB)

and, given −λ2h+ βID
A ≥ 0 (which implies λ2h− βID

B < 0) it also decreases g(−λ2h+ βA)

and increases g(λ2h− βB). The move from (βID
A , βID

B ) to β∗(α+∆eID1 ) thus reduces (76)

for any fixed ∆e1 by increasing C(el2) − C(ew2 ) which is negative, as shown in the proof

of claim (i). Given that (76) is negative for ∆e1 = −α and positive for ∆e1 = 0 and

equilibrium is unique (which is guaranteed by the assumption that c is sufficiently large),

the move from (βID
A , βID

B ) to β∗(α+∆eID1 ) thus leads to an increase in ∆e1, i.e. we have

shown that ∆e∗1(β
∗(α +∆eID1 ), β∗(α +∆eID1 )) > ∆e∗1(β

ID
A , βID

B ) = ∆eID1 .

To see that this leads to a contradiction, let γ = (β∗)−1 − α. Then γ(β) gives

the effort-differential conjecture, ∆e1, that makes β the principal’s optimal choice of

identity-independent bias. Given uniqueness of the equilibrium (βII ,∆eII1 ) the curves

γ(β) and ∆e∗1(β, β) intersect exactly once. And because ∆e∗1(β, β) goes to zero for

β → 0 and for β → ∞ and γ(β) is strictly decreasing, ∆e∗1(β, β) has to cross γ(β)

from below. In particular, for any β < βII it has to hold that γ(β) > ∆e∗1(β, β).

Note that β̂ = β∗(α + ∆eID1 ) < β∗(α + ∆eII1 ) = βII because β∗ is decreasing and we

have assumed that ∆eID1 > ∆eII1 . Hence γ(β̂) > ∆e∗1(β̂, β̂), or formulated equivalently,

∆eID1 = ∆e∗1(β
ID
A , βID

B ) > ∆e∗1(β
∗(α+∆eID1 ), β∗(α+∆eID1 )), which contradicts our earlier

finding.

Proof of Corollary 4

This proof assumes that α is sufficiently small such that Pα(β
∗(α̃), β∗(α̃), α̃) is increasing

in α̃ for all α̃ < α + ∆eII1 . Choosing α like that is possible because, as shown above,

limα→0∆eII1 = 0 and limα̃→0
∂β∗

∂α̃
= 0, so that Pα(β

∗(α̃), β∗(α̃), α̃) is increasing in α̃ for

small α by the envelope theorem.

Part (i) This claim is true because Pα(β
ID
A , βID

B , α+∆eID1 ) < Pα(β
II , βII , α+∆eII1 )

follows from (75). To see this note first that, as Pα is increasing in βA but decreasing in

βB, it holds that Pα(β
ID
A , βID

B , α +∆eID1 ) < Pα(β
∗(α +∆eID1 ), β∗(α +∆eID1 ), α +∆eID1 ),

because, as shown above, the principal’s optimal biases satisfy βID
A = β∗

A(α + ∆eID1 ) <

β∗(α +∆eID1 ) < β∗
B(α +∆eID1 ) = βID

B . And because, by assumption, Pα(β
∗(α̃), β∗(α̃), α̃)

is increasing in α̃ for all α̃ < α+∆eII1 it follows from (75) that Pα(β
∗(α+∆eID1 ), β∗(α+

∆eID1 ), α+∆eID1 ) < Pα(β
∗(α +∆eII1 ), β∗(α +∆eII1 ), α+∆eII1 ) = Pα(β

II , βII , α+∆eII1 ).

Part (ii) To prove the second claim, we determine the effect of a move from identity-

independent to identity-dependent bias on the agents’ utility differential by considering

lim
α→0

d

dα
∆U(βA, βB, α+∆e1) = 2

dPα

dα
|α=0 + ce∗1

∂∆e1
∂α

|α=0. (78)
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Here we used that costs are quadratic and that in the limit agents exert the same first-

stage effort e∗1 = limα→0 e
∗
A,1 = limα→0 e

∗
B,1. From the corresponding first order condition

we get

ce∗1 = g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]. (79)

Using the fact that, as shown in the proof of Proposition 4, limα→0
∂β∗

A

∂α
= − limα→0

∂β∗
B

∂α

we get

dP ID
α

dα
|α=0 = g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]

(
1 +

d∆eID1
dα

|α=0

)
(80)

+[G(λ1h)g(λ2h+ β∗(0)) +G(−λ1h)g(−λ2h+ β∗(0))]
dβ∗

A

dα
|α=0

whereas limα→0
∂β∗

∂α
= 0 implies

dP II
α

dα
|α=0 = g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]

(
1 +

d∆eII1
dα

|α=0

)
. (81)

For the difference we thus get

lim
α→0

d(∆U ID −∆U II)

dα
= g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]

d(∆eID1 −∆eII1 )

dα
|α=0

+ [G(λ1h)g(λ2h+ β∗(0)) +G(−λ1h)g(−λ2h+ β∗(0))]
dβ∗

A

dα
|α=0.

This is strictly negative, because
dβ∗

A

dα
|α=0 < 0 as shown in the proof of Proposition 4 and

because our analysis above implies that ∆eID1 − ∆eII1 must be non-increasing for small

α. Given that for α → 0, ∆U ID = ∆U II = 0, for small α it must therefore hold that

∆U(βID
A , βID

B , α+∆eID1 ) < ∆U(βII
A , βII

B , α+∆eII1 ).
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