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Abstract

In a common value environment with multi-stage competition, losing a stage

conveys positive news about a rival’s estimation of a contested prize, capable of

balancing the discouraging effect of falling behind. We show that, due to players’

learning from stage-outcomes, aggregate incentives under private information are

often greater than under public information and may even exceed the static com-

petition benchmark. Moreover, laggards can become more motivated than leaders,

giving rise to long-lasting fights. Our results have implications for the duration of

R&D races, the desirability of feedback in labor- and procurement-contests, and the

campaign spending and selective efficiency of presidential primaries.
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1 Introduction

Competition for a scarce resource, such as a patent, political candidacy, promotion, pro-

curement contract, or, generally, a prize, is frequently of a dynamic nature, thus featuring

the possibility that competitors have taken the lead or have fallen behind. There are con-

cerns that in such situations, incentives are undermined by the so-called discouragement

effect (Konrad, 2009): As followers feel discouraged by the costs of catching up, leaders can

allow themselves to lower their efforts, resulting in a reduction of incentives on aggregate.1

Evidence supporting these concerns has been reported not only for experimental settings

(Mago et al., 2013) and sports (Malueg and Yates, 2010, Iqbal and Krumer, 2019), but

also by an influential recent study of online innovation contests (Lemus and Marshall,

2021).

The consequences of the discouragement effect are far reaching and have been noted

for a broad variety of settings. In R&D races, an early breakthrough may mute the

investment-incentives of rival firms and lead to a slow-down of innovation (Fudenberg et al.,

1983; Harris and Vickers, 1987; Judd et al., 2012). In promotion tournaments, work-

ers can become demotivated by the achievements of their co-workers, putting under

scrutiny the wide-spread use of interim performance evaluations (Klein and Schmutzler,

2017) and feedback policies (Gershkov and Perry, 2009; Aoyagi, 2010; Ederer, 2010;

Goltsman and Mukherjee, 2011). In presidential primaries, overall campaign spending is

reduced and early voting in non-representative districts can become decisive for the over-

all outcome of the election (Klumpp and Polborn, 2006). Finally, in sports competitions,

performance differences accumulated during earlier stages may lead to a deterioration of

suspense (Chan et al., 2009).

In this article, we argue that, besides their direct, discouraging effect, stage-wins or

-losses may have an indirect, informational effect, which improves incentives on aggre-

gate by making competition more balanced. Our starting point is the observation that,

while in many of the aforementioned applications stage-wins or -losses are observable,

contestants typically cannot observe each others’ efforts and may be privately informed

about the, arguably, common value of the contested prize. In such situations, a stage-loss

(-win) represents good (bad) news about the contest’s prize, because the likelihood of

a loss (win) is increasing (decreasing) in the opponent’s effort which correlates with his

private information. For example, in an R&D race, an early breakthrough may be the

consequence of a large but unobservable investment by a rival company whose market-

1This effect has also been denoted as momentum effect, to distinguish it from the purely static dis-
couragement resulting from differences in contestants’ abilities (Drugov and Ryvkin, 2023).
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research has revealed a profitable future for the contested innovation. In the presence of

private information, it is therefore no longer clear whether in a dynamic contest aggregate

incentives are reduced by the observation of intermediate outcomes and whether losers of

early stages will exert smaller efforts than their rivals.

To understand why both issues are relevant from an applied perspective, note that in

settings—such as labor contests and promotion tournaments—where the maximization of

aggregate incentives constitutes an objective of the contest’s designer, feedback policies

might prove more beneficial when contestants’ learning about prizes—such as the value

of a promotion—is accounted for.2 Moreover, in situations—such as the regulation of

innovative industries—where competitive balance is a valid concern, accounting for con-

testants’ learning about prizes–such as the value of a patent—can mitigate concerns that

initial leaders will become too dominant.3 Symbolic for the relevance of such learning

effects is the U.S. victory in the “race to the moon”, in spite of the U.S.S.R’s advantage

in rocket propulsion technology. Logsdon (2010) argues that it was the news about Juri

Gagarin’s first orbital flight that induced Kennedy to make NASA a 400,000 employee

agency.

To shed light on the effects of learning on incentives in dynamic contests, Section 2 in-

troduces a stylized model where two homogeneous contestants compete by exerting costly

efforts in three sequential battles. We allow for a generic class of mappings between efforts

and battle outcomes, including the frequently employed Tullock (1980) success function

as a special case. The winner of the best-of-three contest obtains a prize whose common

value is uncertain, either positive or zero.4 At the start of the contest, contestants re-

ceive private, independent, and identically distributed signals, that are informative about

the contest’s prize, and whose realizations can be either good or bad. In each battle,

contestants learn whether they win or lose but cannot observe their rival’s effort.

Our model owes its tractability to the assumption that the underlying information

structure is partially conclusive. In particular, we assume that, while conditional on the

2Evidence for incentive improving effects of feedback has been documented not only for labor set-
tings (Blanesl and Nossol, 2011), but also for education (Azmat and Iriberri, 2010) and innovation
(Lemus and Marshall, 2021) where aggregate effort matters at least partially.

3Evidence that initial breakthroughs do not necessarily lead to market-dominance abound in the phar-
maceutical industry. For instance, cholesterol lowering compounds, so-called statins, were first discovered
by the Japanese company Sankyo, but it was Merck who invested heavily into the development of the
best-selling drug Zocor (Endo, 2010).

4In a sports-, labor-, or campaign-setting, the contest’s prize may consist of the continuation value
of reaching the next higher level, which might be reduced, potentially to zero, by information about
an invincible future opponent. Note that, in our model, a zero prize is equivalent to prohibitively high
costs of effort, which arise in an R&D setting when a potential innovation, e.g. a vaccine, proves to be
infeasible.
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prize being zero, either a good or a bad signal can be observed, both contestants will

receive a good signal when the prize is positive.5 It follows that contestants will con-

clude from the observation of a bad signal that the contest’s prize must be zero and that

it is optimal to refrain from exerting effort. The characterization of a Perfect Bayesian

equilibrium—a challenging task for models combining dynamic competition with private

information—is thus simplified to the description of the contestants’ effort choices, con-

ditional on the receipt of a good signal.

In Section 3.1 we show that, in accordance with the aforementioned intuition, players’

learning reduces the gap between the leader’s and the follower’s efforts in the Perfect

Bayesian equilibrium. Moreover, when the battles’ rate of rent dissipation is sufficiently

low, the follower’s effort may exceed the leader’s, making it less likely that the contest

is decided after two rather than three battles. In empirical studies, contests that are

decided within a few battles have been interpreted as evidence for the discouragement

effect. Our finding, that in the presence of private information, the discouragement effect

is mitigated means that long-lasting fights will be more frequently observed and need not

be an indication for the absence of discouragement.6

The balancing effect of learning on a leader’s and a follower’s incentives turns out to

have important implications for incentives on aggregate. In Section 3.2 we first show that

aggregate effort in the Perfect Bayesian equilibrium is higher than in the public infor-

mation benchmark where all signals are observed publicly, as long as learning improves

the contest’s competitive balance. Learning raises effort on aggregate because it miti-

gates the asymmetry of incentives that unfolds during the course of a dynamic contest

by raising expectations of players who have fallen behind while lowering expectations of

those in the lead. In a dynamic contest, private information thus improves incentives by

leveling the playing field. Naturally, because efforts are costly, a direct implication of this

result is that private information can be harmful from the contestants’ perspective, i.e.

asymmetric information may lead to “fighting for lemons”.

Given its potential to improve incentives, a natural question to ask is whether learning

can be strong enough to more than compensate for the discouragement effect that arises

5This information structure is called the “bad news” model in the literature on strategic experimen-
tation (e.g. Keller and Rady, 2015; Bonatti and Hörner, 2017). “Good news” models (e.g. Keller et al.,
2005) produce different investment and learning dynamics. This suggests an investigation of the effects
of good news in dynamic contests which is left for future research. For a discussion of a model where
information is non-conclusive—neither good news nor bad news—see Section 7.

6Ferrall and Smith (1999) argue that in basketball-, hockey-, and baseball-playoffs “a simple model in
which players do not give up [...] best explains the outcome of the championship series.” Similarly, Zizzo
(2002) denotes the lack of evidence for discouragement in experimental patent race data as “a puzzle
from the perspective of patent race theory.”
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from the dynamic nature of competition. We show that, perhaps surprisingly, aggregate

incentives in the Perfect Bayesian equilibrium can be higher than in the static competition

benchmark, where all battles take place simultaneously. This happens, when learning tips

competitive balance in favor of the follower, inducing the follower to exert a higher effort

than the leader. The updating of beliefs in opposite directions creates a “learning-based”

incentive to exert additional effort because establishing a lead allows a player to remain

skeptic about the contest’s prize, thereby insuring him against excessive future effort costs.

Our result thus establishes that the common wisdom, that incentives are reduced by the

dynamic nature of competition, needs not hold in contests that are subject to private

information.

In Section 4 we relate our work to a nascent literature on information design in contests

by characterizing the contest’s optimal (partly-conclusive) information structure.7 Our

analysis reveals a dichotomy of optimal contest designs with the optimal information

structure selecting between two modes of competition. Either, contestants are induced to

fight hard to establish themselves as leaders of the competition and leaders are likely to

become final winners. Or, incentives are relatively weak at the start of the contest but

fighting is likely to last until the very end. Our theory can thus be used to characterize

the circumstances under which competition can be expected to be fierce but short or mild

but long-lasting.

In Section 5, we extend our model by introducing heterogeneity in the contestants’

valuation of the contest’s prize. A valid concern is that private information, although

beneficial for aggregate incentives, may have a negative impact on a contest’s selective

efficiency. In particular, because a low-valuing contestant is more likely to be lagging

behind, narrowing the gap between a leader’s and a follower’s effort through learning may

have the adverse effect of reducing the likelihood with which the high-valuing contestant

can claim the contest’s prize. We argue that this intuition is incomplete and show that,

instead, private information can have a positive effect not only on aggregate incentives

but also on a contest’s selective efficiency.

The robustness of our results is discussed in Section 6 where we use a common value

model familiar from auction theory to argue that the balancing effect of learning on

incentives continues to exist for more general information structures and sets of potential

prizes. Section 7 concludes with a discussion of longer horizons. All formal proofs can be

found in the Appendix.

7The existing literature on information design has mostly restricted attention to static contests. For
a detailed discussion of this literature see Section 4.
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Related literature

The discouragement effect has made its first appearance in the literature on R&D races,

where it can take the particularly severe form of ǫ-preemption (Fudenberg et al., 1983):

Even the smallest innovation advantage can obstruct the investment of rival firms. The

seminal model of an R&D race (Harris and Vickers, 1987) as well as more recent extensions

(Cao, 2014) take the format of a best-of-N contest and its battle-components are strate-

gically equivalent to a Tullock contest when investments are lump-sum (Baye and Hoppe,

2003). Our results thus apply and they suggest that, due to the inherently uncertain

value of innovation, the dynamic nature of R&D-competition is not an obstacle but may

in fact promote investment on aggregate, because firms’ become encouraged by the suc-

cess of their rivals. This finding resonates well with the idea of Choi (1991) that a rival’s

success may improve a firm’s belief in the feasibility of a contested innovation (see also

Malueg and Tsutsui, 1997 and Bimpikis et al., 2019) and that hiding information about

failures can be optimal for incentives when prize-sharing rules are appropriately adjusted

(Halac et al., 2017). An important difference is that in our setting, firms may hold differ-

ing beliefs from the beginning, which means that the observation of progress can have a

balancing effect, augmenting the investment incentives of lagging firms while reducing the

investment incentives of leading firms. Our results thus suggest that, in an R&D setting,

private information induces a closer but also longer race for innovation.8

Our theory combines a dynamic contest framework with private information and it

thereby contributes to two, mostly separate branches of the literature. The first branch

investigates the role of information in static contests, where a different form of discour-

agement arises from potential differences in players’ prize-valuations or abilities. While

for private-value environments, asymmetric information is found to have a positive ef-

fect on aggregate incentives (Morath and Münster, 2008; Dubey, 2013; Wasser, 2013;

Fu et al., 2014; Serena, 2021), in common-value settings, more akin to ours, private infor-

mation typically has a negative or no effect (Hurley and Shogren, 1998; Wärneryd, 2003;

Einy et al., 2017). Our analysis of the static competition benchmark in Section 2 shows

that, in our model, private information has an influence on aggregate effort only when the

contest is dynamic, thus identifying contestants’ learning as the origin of the identified

incentive-gains.

The second branch of the literature characterizes incentives for various types of dy-

8Further effects of private information include the possibility of homogeneous investment-behavior by
heterogeneous firms (Moscarini and Squintani, 2010) and of an information-backlash due to firms’ ability
to learn from a better informed rival (Awaya and Krishna, 2021).
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namic contests with perfect information. Konrad and Kovenock (2009) provide the sem-

inal analysis of a best-of-N contest, with individual battles modeled as all-pay auctions,

where the rate of rent-dissipation and hence the discouragement effect are extreme. For

more moderate rates of rent dissipation, the characterization of equilibrium in a best-of-N

contest has proven rather elusive. Ferrall and Smith (1999) determine a mixed-strategy

equilibrium when battles take the form of an additive tournament with normally dis-

tributed noise and show, numerically, that the players’ likelihood to provide positive effort

falls towards zero when the contest reaches an asymmetric state. For standard Tullock-

battles, a characterization of equilibrium for a best-of-N contest has been obtained by

Klumpp and Polborn (2006). They take the predicted discouragement as an argument in

favor of the sequential format of US presidential primaries, where efforts consist of waste-

ful campaign spending.9 We contribute to this literature by providing a characterization

of equilibrium for generic tournaments with multiplicative noise, including the Tullock

specification as a special case.

The few articles that combine dynamic contests and incomplete information belong to

a growing literature about the desirability of intermediate performance feedback in labor

tournaments (Gershkov and Perry, 2009; Aoyagi, 2010; Goltsman and Mukherjee, 2011;

Ederer, 2010) or cryptocurrency mining protocols (Ely et al., 2023). Feedback can induce

fierce competition when the contest is close, but has a discouraging effect when large

performance differences are revealed. As our static competition benchmark is strategically

equivalent to a situation where players compete sequentially without knowledge of the

individual battles’ outcomes, our theory contributes to this literature. In particular,

our results imply that, in the presence of private information about the contest’s prize

(e.g. the value of becoming promoted), intermediate performance feedback is detrimental

when contestants are very poorly or very well informed but can improve incentives when

information is of moderate quality.

On a more abstract level, our results resonate well with the general idea that, in

strategic common-value settings, dynamics and private information, although each detri-

mental on their own, can be beneficial in combination. For example, in a common value

auction revenue is no less in an (dynamic) English auction than in a (static) first-price

9By introducing multiplicative biases into a best-of-three version of the Klumpp and Polborn (2006)
model, Barbieri and Serena (2022) show that aggregate effort can be increased by favoring the loser of
battle one, thereby extending the logic of leveling the playing field from a static to a dynamic setting.
While we share with Barbieri and Serena the finding that, in battle two, efforts are maximal when winning
probabilities are equalized, in our setting, maximization of effort on aggregate requires the playing field
to be “unleveled”. Private information acts differently than a multiplicative bias because it influences
the players’ valuations rather than their probabilities of winning.
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auction because bidders’ learning of their rivals’ drop-out prices mitigates the winner’s

curse (Milgrom and Weber, 1982; Levin et al., 1996).10 Similarly, in a preemption game,

where players aim to be the first to invest but only when investment is lucrative, private

information can be welfare improving by counteracting the players motive to invest earlier

than in the social optimum (Hopenhayn and Squintani, 2011; Bobtcheff et al., 2021). Fi-

nally, in a strategic experimentation setting (Bolton and Harris, 1999), where players can

learn from the experimentation of others, private information can mitigate the players’

free-riding problem (Heidhues et al., 2015; Dong, 2016; Wagner and Klein, 2022). We

share with these articles the finding that private information can be beneficial but only in

our setting benefits arise from players’ beliefs moving in opposite directions which helps

to reinstall the symmetry and hence competitiveness of a dynamic contest.11

2 Model

We consider two homogeneous, risk-neutral players engaged in a dynamic contest for a

single prize of common value.12 The prize can take two values, V ∈ {0, 1}, and we denote

by ω ∈ (0, 1) the likelihood that V = 0 and by E[V ] = 1 − ω the expected prize.13 The

contest consists of three identical, consecutive battles and the prize is awarded to the first

player achieving a total number of two battle victories.14 In each battle t ∈ {1, 2, 3}, the
two players i ∈ {1, 2} choose an effort eit ≥ 0 simultaneously. A player’s payoff equals

his prize winnings minus his effort costs aggregated over all battles, i.e. we abstract from

discounting. The costs of effort are identical across players and battles and are assumed

to be linear, i.e. C(eit) = eit. Linearity facilitates comparison with an auction setting

and is a natural assumption in contexts where “efforts” consist of financial outlays, such

as investments in an R&D race. More importantly, we show below that with linear costs,

10In our setting, both auctions would create the same revenue (see footnote 25), ruling out the winner’s
curse as a determinant of potential differences in aggregate effort.

11An exception are multi-unit common value “second”-price auctions where the interplay of a win-
ner’s and a loser’s curse facilitates information aggregation, because losing (winning) the auction in-
dicates that a sufficient number of bidders must have values above (below) the equilibrium price
(Pesendorfer and Swinkels, 1997). A “winner’s blessing” can also emerge in an all-pay auction with
an unknown number of bidders (Lauermann and Speit, 2023).

12The possibility of heterogeneity in prize valuations is introduced in Section 5.
13While normalizing V = 1 is without loss of generality, assuming V = 0 lends tractability to our

model, as will become clear below. We show in Section 6 that the balancing effect of private information
on incentives is robust with respect to this assumption.

14Klein and Schmutzler (2017) provide an incentive-based rationale for why competition may take the
format of a best-of-N contest akin to our model. A discussion of the effects of extending the contest to
more than three battles is postponed until Section 7.
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expected aggregate effort is independent of the players’ information in both the static

competition benchmark and the public information benchmark. This allows us to focus

on the effect of information on incentives that arises from the players’ learning rather

than from the curvature of their cost functions.

Competition. We model competition as a multiplicative tournament, featuring the

frequently employed Tullock (1980) model as a special case (see below). Besides adding

robustness, this general approach allows for a more intuitive understanding of our results.

More specifically, we assume that each battle t is won by the player with the highest

performance (with ties broken randomly) and player i’s performance in battle t is given

by the product of his effort eit and an individual noise component xit > 0.15 Individual

noise is distributed identically and independently across battles and players. Denoting by

H(.) the cumulative distribution function of the ratio of individual noise yt =
xjt

xit
, player i’s

probability of winning battle t is thus given by H( eit
ejt
). If in any battle both players exert

zero effort, the battle is equally likely to be won by either player. As equilibrium will be

fully determined by the distribution of the ratio of individual noise, we make assumptions

directly on the corresponding probability density h = H ′.16 Note that from symmetry it

follows that H(y) = 1−H( 1
y
) and differentiating both sides leads to yh(y) = 1

y
h( 1

y
). The

function yh(y), which will play an important role in our analysis of incentives, must thus

have a minimum or a maximum at y = 1. To guarantee that y = 1 constitutes a global

maximum and that a pure-strategy equilibrium exists we make the following assumption.

Assumption 1. The density h of the ratio of individual noise is continuously differen-

tiable and strictly decreasing and the function yh(y) is unimodal with limy→0 yh(y) = 0.

Unimodality is a common assumption in models where performance is additive in

effort and noise (e.g. Lazear and Rosen, 1981).17 A family of densities that satisfy our

15By logarithmic transformation, our multiplicative specification arises from the additive model of
Lazear and Rosen (1981) if efforts are allowed to be negative and C(−∞) = 0. Owing to this greater
flexibility, the multiplicative model includes an effort level that reduces a player’s chance of winning to
zero (c.f. zero investment in an R&D race), thereby facilitating Bayesian updating after a loss.

16Note that two different individual noise distributions, f and f̃ , can give rise to the same ratio
distribution h, even when f and f̃ differ in their “shape”. For example, the distribution of x1

x2

is given

by h(x1

x2

) = 1
(1+

x1

x2
)2

when x1, x2 are distributed according to f(xi) = exp(−xi) and when x1, x2 are

distributed according to f̃(xi) =
1
x2

i

exp(− 1
xi

), although f is monotone decreasing whereas f̃ has a unique

positive mode. It it therefore sensible to consider h as the primitive of our model and to make assumptions
about the shape of h rather than the shape of f .

17Hodges and Lehmann (1954) show that the distribution of the difference of two unimodal noise
distributions must itself be unimodal. Using this result, a straight forward logarithmic transformation
shows that yh(y) must be unimodal when the underlying distribution of individual noise is unimodal.
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distributional assumptions is given by

h(d,r)(y) =
rΓ(2d

r
)

Γ(d
r
)2

y−d−1

(1 + y−r)2
d
r

, d ∈ (0, 1], r > 0. (1)

For d = r, these ratio distributions generate the generalized Tullock contest success

functionHr(
e1
e2
) =

er1
er
1
+er

2

(Jia, 2008). They arise when individual noise follows a generalized

Gamma distribution (Malik, 1967). Assumption 1 thus not only allows individual noise

to follow an exponential (r = d = 1) or Weibull distribution (r = d < 1), as in the

Tullock model, but also accommodates distributions such as the Chi (r = 2, d < 1),

Chi-squared (r = 1, d < 1), or folded-normal (r = 2, d = 1), to name just a few. Note

that a special feature of a multiplicative tournament is that a player with a zero effort

cannot win against a player with a positive effort, which simplifies Bayesian updating in

the dynamic contest considerably. While this property seems realistic in many settings

(e.g. innovation requiring investment), it distinguishes our framework from those models

where effort and noise are substitutes rather than complements (e.g. Lazear and Rosen,

1981).

Information. Our model captures situations in which contestants have private infor-

mation about the common value of a contested prize and may learn about their rival’s

information via the observation of intermediate outcomes. In particular, we assume that

after each battle, players observe the identity of the battle’s winner, while neither indi-

vidual performances nor the rival’s effort are observable. For example, in procurement

contests, such as the Small Business Innovation Research program of the U.S. Department

of Defense, organizers often inform firms about the identity of their preferred supplier(s)

at intermediate phases, while the scores of firms’ proposals as well as the time it took to

prepare them remains undisclosed (Bhattacharya, 2021). Similarly, in promotion tourna-

ments, intermediate performance feedback often takes the form of an ordinal rather than

cardinal ranking and individual efforts are commonly considered as unobservable (Meyer,

1991).

To model the players’ private information about the contest’s prize, we assume that

prior to the first battle, each player i obtains a private signal, si ∈ {B,G}, that is infor-
mative about the value of V . Signals are independent draws from the same conditional

probability distribution Prob(si|V ) specified by Table 1. The parameter σ ∈ (0, 1) mea-

sures the informativeness of the players’ signals. In particular, for σ → 1 players become

perfectly informed about the value of the prize, whereas for σ → 0 signals become com-

pletely uninformative. Note that implicit in this formulation is the assumption that a

“bad” signal si = B is conclusive, as it can only be received when V = 0. For example,

10



Prob(si|V ) V = 0 V = 1
si = B σ 0
si = G 1− σ 1

Table 1: Partially conclusive information structure.

workers competing for a promotion may learn that the position will be filled with an out-

sider, so that outperforming their internal rival has no value. This assumption, together

with the fact that, in this state of the world, the prize has zero value, greatly simplifies

the analysis because it implies that efforts must be zero upon the observation of a bad

signal.18 Based on the players’ prior ω and the above signal structure, parametrized by

σ, two variables will play an important role for our analysis. In particular, we let

β1 ≡ Prob(sj = G|si = G) =
1− ω + ω(1− σ)2

1− ω + ω(1− σ)
(2)

denote a player’s belief that, conditional on having received a good signal, the rival’s

signal is also good, and we let

V G ≡ E[V |s1 = s2 = G] =
1− ω

1− ω + ω(1− σ)2
(3)

be the contest’s expected prize, conditional on both signals being good.

Equilibrium. Our setting constitutes a dynamic Bayesian game, with players’ “types”

given by their signals. We use Perfect Bayesian equilibrium as our solution concept and

focus our analysis on symmetric equilibria in pure strategies. In equilibrium, players

who observe a bad signal will conclude that the contest’s prize is zero and hence exert

zero effort. A symmetric, pure-strategy Perfect Bayesian equilibrium – in the remainder

simply denoted as “an equilibrium” – is thus fully characterized by a vector of efforts

(e∗1, e
∗
L, e

∗
F , e

∗
3) which players exert conditional on having observed a good signal and the

corresponding beliefs about their rival’s type. Here e∗1 and e∗3 denote a player’s efforts

during the first and the third battle, respectively, whereas e∗L and e∗F denote a player’s

effort in the second battle depending on whether the player has become the leader (L)

or follower (F). Note that effort in the third battle is independent of the sequencing of

battle-outcomes (win-loss, loss-win) because in equilibrium a player with a good signal,

who exerted effort in the previous battle, will conclude that his rival’s signal is also good,

given that both parties were capable of winning one battle.

18Our results are robust to pre-play communication if we assume that signals are non-verifiable, be-
cause players have an incentive to report a bad signal, independently of their true signal, making all
communication uninformative. With verifiable signals, private information would unravel, because only
players with a good signal have an incentive to conceal.
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Benchmarking

We now discuss two variations of our model that will serve as benchmarks. In the static

competition benchmark, all battles take place simultaneously rather than sequentially, rul-

ing out the possibility that players may learn about their rival’s signal.19 In the public

information benchmark all signals are public rather than private, making learning obso-

lete.

The following lemma determines expected effort, aggregated over all players and bat-

tles, for these two benchmarks. It shows that, in both benchmarks, expected aggregate

effort is independent of the contest’s information structure and can be fully characterized

by the intensity of competition in the contest’s individual battle components.

Note, for this purpose, that if the contest consisted of a single battle, and information

was symmetric, so that all players had the same expectations about the contest’s prize,

say E[V ], then in equilibrium, efforts would be given by e∗ = argmaxe≥0H( e
e∗
)E[V ]− e =

h(1)E[V ] and each player would expect the payoff U∗ = [1
2
− h(1)]E[V ].20 Hence we can

determine a single battle’s rate of rent dissipation as

R ≡ E[V ]− 2U∗

E[V ]
= 2h(1). (4)

As we are interested in aggregate effort—or equivalently rent dissipation—in contests

combining several individual battles, the rate of rent dissipation of the component battle,

R, constitutes a useful way to parametrize our analysis. Rent dissipation is high when

the impact of effort on performance is strong relative to the impact of noise, which is the

case when the distribution of the ratio of individual noise is rather concentrated around

y = 1. For example, in the Tullock model, where h(1) = r
4
, rent dissipation is linearly

increasing in the Tullock parameter r > 0, which provides an inverse measure of the

contest’s noisiness.

Lemma 1 (Benchmarks). In the static competition benchmark, if a symmetric pure-

strategy Nash equilibrium exists (which requires that h(1) < 1
3
), expected aggregate effort

is ES = 3
2
R · E[V ]. In the public information benchmark, expected aggregate effort in

the unique pure-strategy Subgame Perfect equilibrium is strictly smaller EP = [R + (1 −
19In applications, an alternative no feedback benchmark can be relevant, where battles are sequential

but learning is ruled out because battle outcomes are unobservable. We show in the Appendix that
expected aggregate effort in the no feedback benchmark is the same as under static competition. In
particular, whether battle 3 takes place for sure or only when battles 1 and 2 result in a draw, has no
influence on aggregate incentives.

20 This payoff is positive because it follows from Assumption 1 that the function H(y)−yh(y) is strictly
increasing, converges to zero for y → 0, and equals 1

2 − h(1) for y = 1.
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R)2h(1−R
1+R

)] · E[V ] < ES, i.e. there exists a discouragement effect. In both benchmarks,

aggregate incentives depend on the individual battle’s rate of rent dissipation R but not on

the informativeness, σ, of the players’ signals. An increase in R augments the relative

loss in incentives that is due to the discouragement effect, i.e. dEP /ES

dR
< 0.

Note that in the public information benchmark, players exert positive efforts only when

both signals turn out to be good. More specifically, as shown in the proof of Lemma 1 in

the Appendix, expected aggregate effort can be written as

EP = Prob(s1 = s2 = G)[2eP1 + ePL + ePF + 2H(
1− R

1 +R
)eP3 ], (5)

with (eP1 , e
P
L , e

P
F , e

P
3 ) denoting players’ efforts conditional on the observation of two good

signals. The signal’s informativeness, σ, affects not only the likelihood of two good signals

being observed but also the players’ expectation of the contest’s prize and hence the level

of efforts conditional on this event. It is due to the linearity of players’ effort costs that

the two effects cancel, making expected aggregate effort independent of σ. Hence, an

important implication of Lemma 1 is that, in our framework with private information,

any effect of σ on aggregate incentives must be due to the players’ learning. Our objective

to understand the effect of learning on incentives thus justifies our focus on linear effort

costs.

Also note that aggregate incentives in the static competition benchmark are given by

ES, no matter whether signals are private or public. By showing that EP < ES, Lemma 1

thus proves the existence of a discouragement effect for our setting. Although an increase

in the battles’ rate of rent dissipation increases aggregate incentives in both settings,

according to Lemma 1, the relative loss in incentives due to discouragement is strictly

increasing in R. This is intuitive because for larger R, a greater part of the expected

prize winnings of a potential third battle are dissipated in form of future effort costs.

This reduces aggregate effort not only directly, by decreasing the follower’s incentive to

obtain a draw in the second battle, but also indirectly because the leader anticipates

the follower’s effort reduction and responds strategically.21 Although the total effect of

R on the leader’s effort is ambiguous, the effect of an increase in R on the sum of the

leader’s and the follower’s efforts is negative. Due to the discouragement effect, both the

follower’s effort and the sum of the follower’s and the leader’s effort are lower than the

corresponding values in the static competition benchmark.

21Formally, equations (42) and (43) in the Appendix show that the follower’s effort eP
F
decreases with

R and that the leader’s effort eP
L
depends positively on eP

F
.
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Finally, an alternative reasoning for why aggregate effort under dynamic competition

might be lower is that the simultaneous choice of effort for all three battles induces players

to expend effort in battles that may happen to have no impact on the contest’s overall

outcome. To meet this concern, in the proof of Lemma 1 we also consider an alternative

benchmark in which competition is dynamic so that battle 3 is fought only if the contest

is tied after battles 1 and 2, but battle outcomes are not observable. Expected aggregate

effort turns out to be the same as in the static competition benchmark, which shows

that the reduction in incentives EP < ES is entirely because the observation of battle

outcomes induces players to act as a leader and a follower.

3 Equilibrium characterization

This section characterizes the unique symmetric pure-strategy Perfect Bayesian equi-

librium of the dynamic contest with private information. Sufficient conditions for the

existence of such an equilibrium are given by the following:

Lemma 2 (Equilibrium existence). A symmetric pure-strategy Perfect Bayesian equi-

librium exists and it is unique when the contest is sufficiently noisy, i.e. when h(1) is

sufficiently small, or when players are sufficiently informed/uninformed, i.e. when σ is

sufficiently close to 0 or 1. For the ratio distribution hr(y) =
ryr−1

(1+yr)2
generating the Tullock

contest success function with parameter r ≤ 1, existence and uniqueness are guaranteed

for all σ ∈ (0, 1).

Note that while Lemma 2 deals with equilibrium existence in the full dynamic game,

we show in the proof that in the Bayesian “sub-games” consisting of battles 2 and 3, the

existence of a unique pure-strategy equilibrium is guaranteed by Assumption 1. While

Proposition 1 is concerned only with those sub-games, Proposition 4 deals with sufficiently

informed/uninformed players and existence thus follows from Lemma 2. The statements

in Propositions 2 and 3 apply to the set of contests for which a symmetric pure-strategy

equilibrium exists for all σ ∈ (0, 1). Given Lemma 2, this set is non-empty, and includes

the frequently studied Tullock family as well as all those contests that are sufficiently

noisy.

To derive the unique candidate for a symmetric pure-strategy Perfect Bayesian equi-

librium, first note that the analysis of battle 3 is straightforward, because in the last

battle players must have symmetric beliefs about the contest’s prize. This is because, in

equilibrium battle 3 can only be reached when players’ signals coincide. If signals differ,

then the player with the bad signal and zero effort will lose battles 1 and 2 against the
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player with the good signal and positive effort, making battle 3 obsolete. In analogy to

our single battle analysis in Section 2, players’ efforts (conditional on both signals being

good and the last battle being reached) are thus given by

e∗3 = h(1)V G (6)

and the continuation value of reaching the last battle is given by

U3 = [
1

2
− h(1)]V G > 0. (7)

We proceed in two steps. Section 3.1 determines effort levels in battle 2 with a focus

on the difference between the leader’s and the follower’s incentives. Section 3.2 analyzes

incentives in battle 1 and derives the implications for aggregate effort.

3.1 The balancing effect

In battle 2, a player i ∈ {1, 2} with signal si = G updates his belief β1 about the rival’s

signal sj ∈ {B,G} based on whether he has become the contest’s leader or follower by

winning or losing the previous battle, respectively.

If player i has lost battle 1 with effort e1 > 0, he will conclude that his opponent has

observed a good signal. Had his opponent observed a bad signal he would have exerted

zero effort and could not have defeated him. Hence, the follower will update his belief in

battle 2 from β1 upwards to

β∗
F ≡ Prob(sj = G|si = G, i lost battle 1) = 1 > β1, (8)

i.e. losing the first battle represents “good news”. If instead, player i has won battle

1 with effort e1 > 0, then he does not know whether he was simply lucky or whether

his opponent failed to provide effort upon observation of a bad signal. More specifically,

assuming his opponent employed the equilibrium strategy of exerting effort e∗1 > 0 upon

observation of a good signal and zero effort after observation of a bad signal, player i

would have won the first battle with probability H( e1
e∗
1

) in the case where sj = si = G and

with certainty in the case where sj = B 6= G = si. Hence the leader will update his belief

in battle 2 from β1 downwards to

βL(e1) ≡ Prob(sj = G|si = G, i won battle 1) =
β1H( e1

e∗
1

)

β1H( e1
e∗
1

) + 1− β1
< β1, (9)
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i.e. winning the first battle represents “bad news”. Note that, generally, the leader’s

updated belief in battle 2 depends on the level of effort e1 he exerted in battle 1.22

However, its equilibrium value

β∗
L ≡ βL(e

∗
1) =

1− ω + ω(1− σ)2

1− ω + ω(1− σ)2 + 2ωσ(1− σ)
(10)

is determined entirely by the values of ω and σ. In our model, a central role is taken by

the ratio of the players’ equilibrium beliefs,
β∗

L

β∗

F

, and although β∗
F = 1 due to the partial

conclusiveness of our information structure, we keep β∗
F in the equations to highlight the

fact that both players’ beliefs matter. Note that as a function of σ,
β∗

L

β∗

F

is U-shaped with

a minimum value

min
σ∈(0,1)

β∗
L

β∗
F

=

√
1− ω − (1− ω)

1−
√
1− ω

∈ (0, 1) at σ̂(ω) ≡ 1−
√
1− ω

ω
∈ (0, 1), (11)

and converges to one in the limits where signals become perfectly informative or perfectly

uninformative, i.e. for σ → 1 or σ → 0.

In equilibrium, effort choices (e∗L, e
∗
F ) must satisfy:

e∗L ∈ argmax
eL≥0

β∗
L

[

U3 +H(
eL

e∗F
)(V G − U3)

]

− eL (12)

e∗F ∈ argmax
eF≥0

β∗
FH(

eF

e∗L
)U3 − eF . (13)

By Assumption 1, the above objectives are concave and the corresponding first order

conditions lead to the equilibrium values

e∗F =
1 +R

2
β∗
Lh(

β∗
L

β∗
F

1 +R

1−R
)V G (14)

e∗L =
1− R

2
β∗
Fh(

β∗
F

β∗
L

1−R

1 +R
)V G. (15)

The probabilities of winning the second battle depend on the ratio of the follower’s and

the leader’s efforts which takes the following simple form:

e∗F
e∗L

=
β∗
F

β∗
L

1−R

1 +R
. (16)

The ratio
e∗F
e∗
L

thus inherits its shape from
β∗

F

β∗

L

and is inverse-U-shaped with respect to σ,

with a maximum at σ̂. More specifically, in the Appendix we prove the following result:

22The fact that a deviation from e∗1 to e1 6= e∗1 influences the informativeness of the first battle’s
outcome will be taken into account in the determination of the equilibrium effort level e∗1 in Section 3.2.
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Proposition 1 (Balancing Effect). Private information counteracts the discouragement

effect in battle 2 by moving competitive balance towards the follower:

• Private information increases the probability that the follower catches up with the

leader above the public information benchmark:

e∗F
e∗L

> lim
σ→0

e∗F
e∗L

= lim
σ→1

e∗F
e∗L

=
ePF
ePL

=
1−R

1 +R
for all σ ∈ (0, 1). (17)

• Private information maximizes the sum of the leader’s and the follower’s expected

efforts when it restores “competitive balance”, i.e.
e∗
F

e∗
L

= 1, which happens when
β∗

L

β∗

F

= 1−R
1+R

or equivalently

R ≤ R(ω) ≡ 2− ω − 2
√
1− ω

ω
∈ (0, 1), and (18)

σ = σ± ≡ 1 +R

2
±

√

(
1 +R

2
)2 − R

ω
∈ (0, 1). (19)

• Private information makes the follower even more likely to win the second battle than

the leader, i.e.
e∗
F

e∗
L

> 1, if and only if rent dissipation is low, i.e. R < R(ω), and the

players’ information is neither too precise, nor too imprecise, i.e. σ− < σ < σ+.

The intuition for Proposition 1 can be obtained from (16). In the limits where players

are symmetrically informed or uninformed, i.e. for σ → 1 or σ → 0, the leader’s and the

follower’s updated equilibrium beliefs converge, i.e.
β∗

L

β∗

F

→ 1. As in the public information

benchmark, the leader then exerts a higher effort than the follower and the contest is

more likely to end after two rather than three battles. The follower is discouraged from

exerting effort because winning the overall contest requires not only winning the current

but also the future battle. Intuitively, the follower’s discouragement is increasing in the

battle’s rate of rent dissipation, R ∈ (0, 1).

In contrast, in the presence of private information, i.e. for σ ∈ (0, 1), the leader and

the follower update their beliefs about their rival’s signal in opposite directions because

winning represents bad news whereas losing represents good news, i.e.
β∗

L

β∗

F

< 1. Private

information thus has a balancing effect on incentives by counteracting the follower’s dis-

couragement. Our finding that expected aggregate effort in battle 2 is maximized when

private information “levels the playing field” resonates well with similar results from the

literature on static contests. Note, however, that for private information to be capable

of leveling the playing field, rent dissipation should not be too high. More specifically,
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condition (18) guarantees that the term under the square root in (19) is non-negative and

competitive balance then becomes restored for σ = σ− or for σ = σ+.

Proposition 1 also provides conditions under which the informational effect is strong

enough to tip competitive balance in favor of the follower. Private information makes

the follower more likely to win the second battle than the leader if rent dissipation is low

(R < R(ω)) and players’ information is sufficiently asymmetric (σ− < σ < σ+). Note that

the threshold R(ω) is strictly increasing in the players’ prior, ω, and limω→1R(ω) = 1.

This means that when players are rather pessimistic about the contest’s prize, asymmetric

information can induce followers to exert more effort than leaders for arbitrarily high

degrees of rent dissipation.

Summarizing, the results in this section suggest that in the presence of private informa-

tion, dynamic competition does not have to suffer from deteriorating incentives. Followers

might be as motivated or, in fact, more motivated than leaders. An important implica-

tion for R&D races is that long-standing concerns about ǫ-preemption (Fudenberg et al.,

1983) and suboptimal investments (Harris and Vickers, 1987) might not be warranted.

3.2 Aggregate incentives

Our results in the previous section suggest that in dynamic contests, private information

may have a positive effect on incentives. Private information increases the likelihood that

the contest’s final battle is reached, giving players the opportunity to exert additional

efforts. Moreover, for low rates of rent dissipation, private information can level the

playing field in an intermediate battle between a leader and a follower, thereby maximizing

the sum of their efforts. To understand the effect of private information on incentives on

aggregate, we now complete our characterization of equilibrium by determining the players’

effort choice e∗1 in the contest’s opening battle. We then compare aggregate incentives in

the equilibrium with the benchmarks of public information and static competition.

In battle 1, a player with a good signal believes that with probability β1 the rival

observed a good signal, and hence the rival’s effort is e∗1, whereas with probability 1−β1 the

rival observed a bad signal, and hence the rival’s effort is zero. Denoting the continuation

values of the leader and the follower, conditional on the rival’s signal s ∈ {G,B}, by Us
L

and Us
F , respectively, the players’ equilibrium effort in battle 1 must therefore satisfy:

e∗1 ∈ argmax
e1>0

β1

{

H(
e1

e∗1
)UG

L (e1) + [1−H(
e1

e∗1
)]UG

F

}

+ (1− β1)U
B
L (e1)− e1. (20)

Here we have used the fact that, conditional on the rival’s signal being bad, a player
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exerting a positive effort e1 > 0 must win battle 1 with certainty.23 Moreover, it is

important to note that the continuation values of becoming the leader, depend on the

player’s effort choice e1 through its influence on the leader’s belief βL(e1) in (9). A

deviation from e∗1 changes the player’s belief about the rival’s signal after winning battle

1 and will thus induce him to adjust his effort eL in battle 2 optimally. In the proof of

Lemma 2 we can thus employ the envelope theorem to show that the first-order condition

corresponding to (20) takes the following simple form:

e∗1 = β1h(1)[U
G
L − UG

F ] = β1h(1)[H(
e∗L
e∗F

)V G − (e∗L − e∗F )]. (21)

Equation (21) shows that when players choose their efforts in battle 1, they evaluate con-

tinuation values conditional on their rival having received a good signal, thereby correctly

anticipating the winner’s curse that the contest’s prize is zero when the rival’s signal is

bad. Incentives in battle 1 derive from the fact that an early success leads to the oppor-

tunity to secure overall victory already in the intermediate battle. Early success happens

with probability H(
e∗
L

e∗
F

) but comes at the expense of the future effort differential e∗L − e∗F .

Having completed our characterization of equilibrium efforts (e∗1, e
∗
L, e

∗
F , e

∗
3) we are now

ready to consider aggregate incentives, i.e. the expected sum of efforts aggregated over all

battles and all players. We already know from Proposition 1 that in battle 2, the sum of

the leader’s and follower’s effort is maximized when private information levels the playing

field so that e∗F = e∗L. In fact, expected aggregate effort in battle 2 can be written as

E∗
2 = Prob(s1 = s2 = G)(e∗L + e∗F ) + Prob(s1 6= s2)e

∗
L = E[V ]

e∗L
e∗F

h(
e∗L
e∗F

), (22)

and it follows from (16) and Assumption 1 that E∗
2 is a unimodal function of the ratio of

players’ beliefs
β∗

L

β∗

F

with a maximum at
β∗

L

β∗

F

= 1−R
1+R

. Figure 1 depicts E∗
2 as a function of

β∗

L

β∗

F

when rent dissipation is sufficiently low for this maximum to be attained.

The following lemma characterizes expected aggregate effort in the remaining battles,

battle 1 and battle 3.

Lemma 3. Expected aggregate effort in the symmetric battles 1 and 3 is given by

E∗
1 + E∗

3 = R · E[V ]

[

1 +
1

V G
(e∗F − e∗L)

]

, (23)

and it is maximized when private information induces the follower to exert larger effort

than the leader in the asymmetric battle 2.

23The possibility of a deviation to e1 = 0 must be checked separately, because in that case a player will
lose battle 1 against a rival with a bad signal with probability 1

2 . See the proof of Lemma 2 for details.
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Figure 1: Aggregate Effort (Schematic): E∗ as a function of the ratio of equilibrium

beliefs
β∗

L

β∗

F

for R < R(ω). The figure separates efforts in battle 2 from efforts in battles 1

and 3. E∗
2 is unimodal and maximized at

β∗

L

β∗

F

= 1−R
1+R

, when learning restores competitive

balance so that e∗F = e∗L. E
∗
1+E∗

3 is larger (smaller) than RE[V ] when learning induces the
follower to exert higher (lower) effort than the leader. Our formal analysis shows that E∗

is strictly decreasing for all
β∗

L

β∗

F

∈ [1−R
1+R

, 1) and takes the benchmark values ES = 3
2
RE[V ]

and EP = 1
2
RE[V ] on the boundaries of this interval. Whether or not E∗ dips below ES

and EP for low belief ratios depends on parameters as shown by the numerical examples
in Figure 2.

Lemma 3 shows that aggregate effort in battles 1 and 3 varies with the difference be-

tween the leader’s and the follower’s efforts in battle 2 but is independent of the likelihood

with which battle 2 is decided in favor of one or the other player. This is because a change

in battle 2 efforts affects the likelihood [1 −H(
e∗L
e∗
F

)] that battle 3 is reached by the same

absolute amount as it influences the likelihood H(
e∗
L

e∗
F

) that securing leadership in battle

1 results in an early victory. As a consequence, any potential gain in aggregate effort

that is due to a higher likelihood that battle 3 is reached is exactly compensated by an

equally sized loss in battle 1 effort resulting from a reduction of the benefits of becoming

the contest’s leader.

Further note from (14) and (15) that E∗
1 + E∗

3 in (23) depends on information only

through its influence on the players’ equilibrium beliefs β∗
L and β∗

F . Beliefs that induce a
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positive (negative) effort-differential between the follower and the leader in the asymmetric

battle 2 augment (diminish) incentives in the symmetric battles 1 and 3 by making it less

(more) costly to become the leader rather than the follower (see Figure 1).

From these observations and the unimodality of second-stage effort it follows imme-

diately that over the range [1−R
1+R

, 1], aggregate effort is maximized at
β∗

L

β∗

F

= 1−R
1+R

. Further

details of the dependence of aggregate effort on the underlying information structure σ are

the subject of Section 4. In the remainder of this section, we compare aggregate incentives

in the Perfect Bayesian equilibrium with the two benchmarks of public information, EP ,

and static competition, ES, characterized in Lemma 1.

Comparison with benchmarks

Start by considering the limits where signals become either perfectly uninformative (σ →
0) or perfectly informative (σ → 1). In both cases, private information ceases to play a

role because learning about the rival’s signal cannot improve upon a player’s information.

In both limits, the leader’s and the follower’s beliefs converge and the ratio of their

equilibrium efforts converges to the public information benchmark, i.e.
e∗F
e∗
L

→ ePF
eP
L

= 1−R
1+R

.

As a consequence, players’ continuation values and thus their incentives to exert effort in

the first battle, as well as the likelihood that the last battle is reached all become the same

as under public information. In the limit where
β∗

L

β∗

F

→ 1, aggregate incentives in the Perfect

Bayesian equilibrium therefore converge to aggregate incentives under public information

and are thus strictly smaller than when competition is static, i.e. E∗ → EP < ES, as

depicted in Figure 1.

Off the limit, that is for
β∗

L

β∗

F

< 1, the comparison of aggregate incentives with the

benchmarks becomes most transparent when we distinguish between three cases. These

cases differ in the extent to which learning can affect the dynamic contest’s competitive

balance and can be classified according to the individual battles’ degree of rent dissipation.

High Rent Dissipation: R > R. When rent dissipation is high, learning improves

competitive balance but cannot restore it completely. In spite of the diametrical updating

of beliefs, the discouragement effect then induces the follower to exert a lower effort than

the leader, i.e.
eP
F

eP
L

<
e∗
F

e∗
L

< 1, independently of the signals’ precision. The effect of private

information on aggregate incentives can be seen in the numerical example in Figure 2.

A reduction in
β∗

L

β∗

F

has an unambiguously positive effect on aggregate incentives because

it makes it less costly to become the leader and can only improve competitive balance

in the intermediate battle. Formally, we show in the proof of Proposition 2 that E∗ is

strictly decreasing in
β∗

L

β∗

F

for all
β∗

L

β∗

F

> 1−R
1+R

. To understand why, for R > R, aggregate
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incentives fall short of the static competition benchmark, consider the limit R → R.

For
β∗

L

β∗

F

= minσ
β∗

L

β∗

F

→ 1−R
1+R

, learning exactly neutralizes the discouragement effect and

competitive balance is restored perfectly, making the contest equally likely to be decided

after two or three battles. This means that the only difference between winning or losing

the first battle is the corresponding change in the contest’s intermediate score, making

incentives at every stage of the dynamic contest become equal to static incentives. Hence

E∗ → ES for
β∗

L

β∗

F

→ 1−R
1+R

and because, as argued above, aggregate incentives are strictly

decreasing in
β∗

L

β∗

F

, it follows that E∗ < ES for all
β∗

L

β∗

F

> 1−R
1+R

.

Moderate rent dissipation: R ≤ R < R. When rent dissipation is moderate, learning

can tip competitive balance in favor of the follower. More specifically, if R < R then

minσ
β∗

L

β∗

F

< 1−R
1+R

and for all belief ratios
β∗

L

β∗

F

< 1−R
1+R

, learning will induce the follower to

exert a strictly higher effort than the leader. We show in the proof of Proposition 2

that tipping competitive balance in favor of the follower has a strictly positive effect on

aggregate effort. Intuitively, tipping competitive balance marginally has no first-order

effect on E∗
2 , because incentives in the asymmetric intermediate battle are maximized

when the playing field is leveled. However, tipping the balance in favor of the follower

raises E∗
1 + E∗

3 by reducing the cost C(e∗L)− C(e∗F ) = e∗L − e∗F of becoming the contest’s

leader. Because E∗ = ES for
β∗

L

β∗

F

= 1−R
1+R

, a straightforward but important implication is

that for R < R, learning can increase aggregate incentives above the static competition

benchmark (see Figure 2). Note that although aggregate incentives might decline and

dip below ES when the ratio of beliefs approaches its minimum, for R ≥ R aggregate

incentives are guaranteed to stay above the less demanding public information benchmark,

EP < ES. The reason is that, for R ≥ R, the contest’s competitive imbalance can never

be more than reversed, i.e.
e∗
L

e∗
F

≥ eP
F

eP
L

for all σ ∈ (0, 1). To understand why this guarantees

that E∗ > EP , remember that due to the model’s symmetry yh(y) = 1
y
h( 1

y
), which means

that, given (22), reversing competitive imbalance would leave E∗
2 unchanged. However,

reversing competitive imbalance would have a positive effect on E∗
1 + E∗

3 , because, as we

have seen, a positive cost differential C(ePL)− C(ePF ) = ePL − ePF > 0 creates disincentives

to exert effort whereas a negative cost differential C(e∗L) − C(e∗F ) = e∗L − e∗F < 0 creates

incentives.

Low rent dissipation: R < R. Finally, when rent dissipation is low, learning effects

can be strong enough to reduce competitive balance relative to the public information

benchmark. As argued above, this requires that the contest’s competitive imbalance

becomes reversed, i.e. for some σ ∈ (0, 1) it has to hold that
e∗L
e∗
F

<
ePF
eP
L

which, given (16),
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Figure 2: Aggregate Effort (Numerical Examples): E∗ in dependence of the ratio of

equilibrium beliefs
β∗

L

β∗

F

∈ (minσ
β∗

L

β∗

F

, 1) for the ratio distribution hr(y) =
ryr−1

(1+yr)2
generating

the Tullock contest success function with parameter r. Learning leads to updating of
beliefs in opposite directions (β∗

L < β1 < β∗
F ) which increases aggregate incentives above

the public information benchmark EP and the static competition benchmark ES, unless
updating becomes extreme. Parameter values are: (High Rent Dissipation) r = 0.5,
ω = 0.5 ⇒ R = 0.25 > R ≈ 0.17; (Moderate Rent Dissipation) r = 0.25, ω = 0.5 ⇒
R ≈ 0.08 < R = 0.125 < R ≈ 0.17; (Low Rent Dissipation) r = 0.2, ω = 0.995 ⇒ R =
0.125 < R ≈ 0.58.

is equivalent to minσ
β∗

L

β∗

F

< (1−R
1+R

)2 or

R < R(ω) ≡
ω − 2

√

(2− ω)
√
1− ω − 2(1− ω)

2− ω − 2
√
1− ω

∈ (0, R(ω)). (24)
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In the final panel of Figure 2, we depict an example where the resulting incentive effects

are strong enough to reduce aggregate incentives below the public information benchmark.

Our formal result below shows that this always happens when R < R(ω) and the likelihood

ω of the contest’s prize being zero is sufficiently large. When players’ are sufficiently

pessimistic about the contest’s prize, observation of the first battle’s outcome can induce

players to hold beliefs about their rival’s signal that are approximately diametrical, i.e.

minσ
β∗

L

β∗

F

→ 0. Private information is then harmful for incentives because the bad news of

a battle win induces the leader to refrain from exerting further efforts in spite of his lead.

The following proposition summarizes our results about the comparison of aggregate

incentives with the benchmarks of public information and static competition:

Proposition 2 (Aggregate Incentives - Benchmarking). The comparison of aggregate

effort in the unique equilibrium of the dynamic contest with private signals, E∗, with the

public information benchmark, EP , and the static competition benchmark, ES, depends

on the individual battles’ rate of rent dissipation R = 2h(1) as follows:

• If rent dissipation is high, R > R(ω), learning increases aggregate incentives but

cannot make up for the discouragement stemming from the dynamics of competition,

i.e. EP < E∗ < ES for all σ ∈ (0, 1).

• If rent dissipation is moderate, R(ω) < R < R(ω), learning increases aggregate

incentives and can raise aggregate incentives above the static competition benchmark

by tipping competitive balance in favor of the follower, i.e. E∗ > EP for all σ ∈ (0, 1)

and E∗ > ES for some σ ∈ (0, 1) inducing e∗F > e∗L.

• If rent dissipation is low, R < R(ω), learning increases aggregate incentives as

long as it improves competitive balance but can reduce aggregate incentives when

competitive imbalance is more than reversed, i.e. for all ω sufficiently close to 1 it

holds that E∗ < EP for some σ ∈ (0, 1) inducing
e∗
L

e∗
F

<
eP
F

eP
L

.

Proposition 2 shows that in the dynamic contest with private information, learning has

two effects: (1) it will increase incentives above the public information benchmark as long

as learning improves competitive balance; and (2) it will raise aggregate effort above its

static competition level if it can tip competitive balance in favor of the follower. While the

first part of this result resonates well with the general idea that in contests incentives are

maximized when the playing field is leveled (e.g. Barbieri and Serena, 2022), the second

part contrasts with the common wisdom that the dynamic nature of competition must be

harmful for incentives (e.g. Klumpp and Polborn, 2006).
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Our results thus establish that in a contest, dynamics need not necessarily be harmful

for incentives when players are endowed with private information. Intuitively, the static

contest can be improved upon, because in the dynamic contest, additional incentives can

be created by establishing an appropriate link between battle outcomes and the players’

learning of their rival’s signal. In particular, if e∗F > e∗L, then winning battle 1 not only

establishes a lead, but allows the winning player to maintain the belief that his rival’s

signal might be bad, thereby reducing his future effort cost.

On a more abstract level, the positive influence of dynamics on incentives described

by Proposition 2 is reminiscent of Milgrom and Weber’s (1982) result that in a common

value setting with affiliated signals, expected revenue is (weakly) higher in a dynamic,

English auction than in a static, first-price auction.24 Note, however, that in our environ-

ment, both auction formats generate the same expected revenue given by E[V ].25 This

shows that, while, generally, dynamic formats benefit both auction- and contest-designers

through enabling players to learn about each others’ private information, they do so for

different reasons. While in dynamic auctions, learning mitigates the winner’s curse that

induces bidders to shade their bids when bidding is static, in dynamic contests learning

reduces the future effort costs of early winners, thereby raising the players’ incentives to

establish a lead.

4 Information design

In this section, we characterize the signal quality that maximizes aggregate incentives in

dependence of the contest’s rate of rent dissipation, R, and the contestants’ prior, ω. Our

analysis shows that, when information can be used as a design variable, a contest designer

will use it to fine-tune the likelihood with which initial leaders will become final winners,

thereby resolving a basic trade-off between fights that are short and fierce and fights that

are mild but long-lasting.

While our results contribute to a nascent but growing literature on information de-

24Important here is that, as in our setting, competition is dynamic but for a single object. If privately
informed bidders compete in a series of auctions for multiple objects, bidders will reduce their bids to
appear as having low valuation, and this effect can make a one-shot sale of all objects preferable for the
seller (Hörner and Jamison, 2008).

25 Given our informational assumptions, player i will bid zero upon observation of si = B and t upon
observation of si = G. Using arguments familiar from the all-pay auction literature (Baye et al., 1996) it
is straightforward to show that in the unique symmetric equilibrium of a first-price sealed bid auction t

is distributed according to the cdf F (t) = ω(1−σ)σt
1−ω−[1−ω+ω(1−σ)2]t and expected revenue equals E[V ] = 1−ω.

Because expected revenue in an English auction is weakly higher due to the linkage principle, expected
revenues in both auctions formats have to be identical.
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sign in contests (discussed below), we should emphasize that our assumption of partially

conclusive signals poses a restriction on the set of posteriors that can be induced.26 More

specifically, besides the usual requirement of Bayes plausibility, in our model posteriors

satisfy Prob(V = 1|si = B) = 0. In our setting an “information structure” is therefore

fully determined by the posterior Prob(V = 1|si = G) = 1−ω
1−ω+ω(1−σ)

, parametrized by

the signal quality σ, and our following result characterizes the information structure that

maximizes aggregate incentives within the set of all such partially conclusive information

structures.27 Importantly, this set contains fully informative (σ = 1) and fully uninforma-

tive (σ = 0) information structures as extreme cases, which means that with respect to

our subsequent claims about the optimality of a partially revealing information structure,

our assumption is without loss of generality.

Proposition 3 (Information design). In the dynamic contest with private signals, the

signal quality σ∗ that maximizes aggregate incentives, E∗(σ), depends on the contest’s

rate of rent dissipation, R = 2h(1) and the contestants’ prior ω = Prob(V = 0) as

follows:

• If R ≥ R(ω) then E∗(σ) has inverted U-shape and the optimal signal is σ∗ = σ̂(ω)

as defined in (11). Optimal signals induce the contest to be more likely to be decided

after two rather than three battles, i.e. e∗L > e∗F . More pessimistic priors require

more accurate information, i.e. σ̂(ω) is strictly increasing with limω→0 σ̂(ω) = 1
2

and limω→1 σ̂(ω) = 1.

• If R < R(ω) then E∗(σ) is strictly increasing in (0, σ−] and strictly decreasing in

[σ+, 1) and any signal quality σ∗ that maximizes incentives satisfies σ∗ ∈ (σ−, σ+).

Optimal signals thus induce the contest to be more likely to be decided after three

rather than two battles, i.e. e∗L < e∗F .

The threshold R(ω) is strictly increasing with limω→0R(ω) = 0 and limω→1R(ω) = 1.

Proposition 3 is illustrated in Figure 3. The figure reveals a dichotomy of optimal

contest designs. For high rates of rent dissipation and relatively optimistic priors, optimal

signals create fierce but short fighting. The incentive maximizing contest is characterized

by a large likelihood (> 50%) to be decided within only two battles and high initial

26An alternative simplification of the information design problem can be achieved by assuming infor-
mation to be verifiable and to focus on the designer’s choice between disclosure and concealment (e.g.
Serena, 2021).

27In the seminal contribution of Kamenica and Gentzkow (2011) and related articles, the optimal in-
formation structure turns out to be partially conclusive.
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Figure 3: Information Design: The incentive maximizing signal quality σ∗ induces
either short and fierce fighting or fighting that is mild but long-lasting, depending on
the individual battles’ rate of rent dissipation R = 2h(1) and the contestants’ prior

ω = Prob(V = 0). The diagram depicts the critical value R(ω) = 2−ω−2
√
1−ω

ω
.

efforts e∗1 to become the contest’s leader. In contrast, for low rates of rent dissipation and

relatively pessimistic priors, optimal signals lead to longer lasting but less fierce fighting.

Note that, independently of the contest’s rate of rent dissipation and the contestants’

prior, dynamic incentives are maximized when private information is neither perfectly

informative nor perfectly uninformative. This is a direct implication of Proposition 2

which has shown that learning raises aggregate incentives above the public information

benchmark as long as it improves competitive balance. As for σ → 0 and σ → 1, the

distinction between public and private information becomes obsolete, aggregate incentives

must be maximized by some σ∗ ∈ (0, 1), i.e. the optimal information structure is partially

revealing. The reason for this result is that for learning to have a balancing effect on

incentives, contestants have to update their beliefs about the contest’s prize in opposite

directions, which is impossible when information is symmetric.

Proposition 3 adds to an ongoing discussion about the potential optimality of partially

revealing information structures in contests. While the seminal article by Zhang and Zhou

(2016) has mainly advocated fully informative or fully uninformative information struc-

tures, more recent articles have rationalized the use of information structures that are

only partially revealing (Chen, 2021; Clark and Kundu, 2021a; Clark and Kundu, 2021b;
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Kuang et al., 2019; Melo-Ponce, 2020). Our setting distinguishes itself from most existing

work by allowing asymmetric information to be two-sided and the contest to be dynamic.

Probably most closely related is Antsygina and Teteryatnikova (2022) who consider a two-

player static all-pay auction with linear costs where both players’ valuations are binary

and ex ante uncertain. They allow for information technologies that send messages to

players privately or publicly and show that the optimal information structure features

private signals and induces symmetric beliefs. This structure reveals the state whenever

both players valuations are identical but employs noisy and correlated signals when valua-

tions differ. Intuitively, the designer tries to make players believe that their valuations are

likely to be equal, because effort is largest when valuations are identical. As in our setting,

information is thus used to “level the playing field”, but the incentive-deteriorating het-

erogeneity emerges from exogenous differences in prize valuations rather than endogenous

score-differences along the course of a dynamic contest.

5 Selective efficiency

Besides the provision of incentives, selective efficiency is an important objective in many

competitive settings. It is achieved when a contest is won by the contestant with the

highest valuation for the contest’s prize or—when prize-valuations are homogenous—

by the contestant with the lowest marginal cost of effort. For instance, in an R&D

setting, granting a patent to the highest valuing firm may benefit consumers. Similarly,

an organization’s success may depend on whether a contest for promotion is won by the

most “able” candidate.

Our theory has shown how in dynamic contests learning can improve incentives by

motivating contestants who lag behind. However, because low-valuation contestants are

more likely to be lagging behind than high-valuation contestants, one might be concerned

that learning could have an adverse effect on selective efficiency. In this section, we

introduce heterogeneity into our model, to show that the gain in aggregate incentives

from learning does not necessarily come at the cost of a reduction in selective efficiency.

More specifically, we now extend our model by assuming that costs of effort are

C i(eit) = cieit for contestant i ∈ {l, h} and that one contestant has a lower marginal

cost than the other, i.e. we let ch

cl
≡ γ > 1. A super-index will be used throughout the

analysis to denote the contestants’ cost-types. To keep our model tractable, we assume

that contestants observe whether they are the low-cost contestant l or the high-cost con-
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testant h only after they have competed once by exerting effort in the first battle.28 In

some applications, such as promotion tournaments, where workers are ignorant of their

abilities relative to their rivals initially, this assumption may be a reasonable starting

point. In other settings, where abilities are known right from the start, our subsequent

results remain valid when ability differences are sufficiently small.

Selective efficiency, i.e. the probability that the low-cost (high-ability) contestant wins

the contest is given by

S ≡ 1

2
· [H(

elL
ehF

) +H(
ehF
elL

)H(
el3
eh3

)] +
1

2
·H(

elF
ehL

)H(
el3
eh3
). (25)

The two terms represent the cases where the low-cost type has won or lost the first battle,

respectively. Both cases are equally likely because, given our assumptions, contestants

will exert identical efforts in the first battle.

Efforts and expected payoffs in battle 3 are straightforward to calculate and given by

el3 = γ · V
G

cl
h(γ) >

V G

cl
h(γ) = eh3 , (26)

U l
3 = [H(γ)− γh(γ)]V G > [H(

1

γ
)− γh(γ)]V G = Uh

3 . (27)

In the second battle, we have to distinguish between two cases. If the low-cost contestant

has become the leader, equilibrium efforts must solve

elL ∈ argmax
e≥0

U l
3 + β∗

L(V
G − U l

3)H(
e

ehF
)− cle (28)

ehF ∈ argmax
e≥0

Uh
3H(

e

elL
)− che (29)

and it follows that

elL
ehF

= γβ∗
L

V G − U l
3

Uh
3

. (30)

Similarly, if the high-cost contestant has become the leader, we get

ehL
elF

=
1

γ
β∗
L

V G − Uh
3

U l
3

. (31)

Substitution of (27), (30), and (31) into (25) gives a closed form expression for selective

efficiency S(γ, σ) in dependence of the contestants’ cost differential γ and their signals’

informativeness σ:

S(γ, σ) =
1

2
[H(γ) +H

(

β∗
L(σ)γ

V G − U l
3

Uh
3

)

H(
1

γ
)] +

1

2
H

(

γ

β∗
L(σ)

U l
3

V G − Uh
3

)

H(γ). (32)

28When contestants are heterogeneous in battle 1 they will exert differing efforts, so that equilibrium
beliefs in battle 2 will depend on past efforts, which means that the model can no longer be solved
recursively.
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We obtain the following result:

Proposition 4 (Selective Efficiency). Private information can improve the contest’s se-

lective efficiency. Formally, for all γ > 1 there exist σmin, σmax ∈ (0, 1) such that for all

σ ∈ (0, σmax) ∪ (σmin, 1), selective efficiency S(γ, σ) is strictly larger than in the public

information benchmark.

To understand the intuition for this result consider the effect of a marginal reduction

in the leader’s equilibrium belief β∗
L starting from its public information benchmark value

β∗
L = 1. This can be achieved via the introduction of private information, either by making

signals marginally informative, σ ∈ (0, σmax), or marginally uninformative, σ ∈ (σmin, 1).

Lowering the leader’s equilibrium belief raises the likelihood with which the second battle

is won by the lagging contestant. This decreases selective efficiency when the low-cost

contestant is in the lead but increases selective efficiency when the low-cost contestant has

fallen behind. From (32), the resulting change in selective efficiency is ∆S = ∆S+−∆S−

where

∆S+ =
1

2
γ

U l
3

V G − Uh
3

h(γ
U l
3

V G − Uh
3

)H(γ) > 0, (33)

∆S− =
1

2
γ
V G − U l

3

Uh
3

h(γ
V G − U l

3

Uh
3

)H(
1

γ
) > 0. (34)

In the proof of Proposition 4 we show that ∆S+ > ∆S−. Intuitively, learning has a

stronger effect on incentives for a lagging low-cost contestant than for a lagging high-cost

contestant. When the low-cost contestant is equally likely to be lagging as the high-cost

contestant, which happens when abilities are initially unknown or when differences in

abilities are small, the overall effect is an increase in selective efficiency.

6 Robustness

Our theory has shown that, in a dynamic contest with private information, learning will

induce leaders and followers to update their beliefs in opposite directions which can have

powerful effects on incentives. In our model, learning takes a particularly simple form

because losing a battle (with effort) allows a player to become perfectly informed about

his rival’s signal. This is the consequence of players choosing zero effort conditional on

the observation of a bad signal, which is optimal because a bad signal is conclusive about

the contest’s prize being zero. In this section we show that the balancing effect of private

information on incentives highlighted in Section 3.1 is not driven by these simplifying
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assumptions. More specifically, we show that, even when both players remain imperfectly

informed because a player’s effort and hence his chance of winning is always positive,

learning is capable of balancing a leader’s and a follower’s incentives. Our analysis in

this section demonstrates that the mechanism responsible for the increase in aggregate

incentives identified in Section 3.2 exists for rather general specifications of potential

prize-valuations and information-structures.

In the following, we adopt a symmetric common value model (Krishna, 2010) by

assuming that each player receives a signal si ∈ ℜ and that the contest’s prize V (s1, s2) is

a symmetric function that is non-negative and strictly increasing in each signal. Signals are

identically and independently distributed with density g(si) and cumulative distribution

G(si). While we impose no further restrictions on the contest’s potential prizes and the

players’ information structure, we simplify our model in two other dimensions. First, we

assume efforts to be binary, i.e. eit ∈ {el, eh} where 0 < el < eh. Second, we restrict the

dynamic contest to consist of only two stages, by assuming that in case of a draw after

two battles, each player receives the contest’s prize with probability 1
2
(1 − ρ). We thus

refrain from modeling players’ behavior following a draw, and introduce the parameter

ρ ∈ (0, 1) to captures the rate of rent-dissipation that would arise if, following a draw,

players’ had to keep competing. Finally, to abbreviate notation, we let c = C(eh)−C(el)

denote the incremental cost of providing high effort rather then low effort, and we denote

by η = H( e
h

el
) ∈ (1

2
, 1) the likelihood that a high effort player wins a battle against a low

effort player.

In each battle, players will adopt a threshold-strategy by choosing high effort if and only

if their signal exceeds a threshold. Focusing on a symmetric equilibrium, we let s̄1 denote

the players’ threshold in battle 1. In battle 2, the players’ thresholds depend on whether

they lost or won battle 1 and, through updating, on whether they lost or won with low or

with high effort. As the players’ incentives to exert effort increase from battle 1 to battle

2, the relevant thresholds s̄L and s̄F of the leader and the follower, respectively, are smaller

than s̄1. They can thus be determined from the requirement that after winning (losing)

battle 1 with low effort e1 = el, a leader (follower) with signal sL = s̄L (sF = s̄F ) must be

indifferent between low and high effort in battle 2. The derivation of the thresholds s̄L

and s̄F is simplified by the fact that exerting high effort rather than low effort increases

a player’s expected payoff by an amount that is independent of the opponent’s effort.

More specifically, note that, for any value, V (s1, s2), of the contest’s prize, the leader’s

gain in expected payoff from exerting high rather than low effort is 1
2
(1+ρ)(η− 1

2
)V (s1, s2),

whereas the corresponding value for the follower is 1
2
(1−ρ)(η− 1

2
)V (s1, s2). For any realized
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value of the contest’s prize, the follower thus has a weaker incentive to exert effort than

the leader. There exists a discouragement effect, which in this stylized two stage model

arises from the fact that a draw leads to rent dissipation, parameterized by ρ.

However, private information has a balancing effect on incentives, because it induces

the leader and the follower to have different expectations about the contest’s prize. To

see this let bL and bF denote the players’ updated beliefs—after winning or losing battle

1—that their rival’s signal lies above the threshold s̄1. From Bayesian updating these

beliefs are given by

bL =
2(1− η)[1−G(s̄1)]

G(s̄1) + 2(1− η)[1−G(s̄1)]
(35)

bF =
2η[1−G(s̄1)]

G(s̄1) + 2η[1−G(s̄1)]
, (36)

and it holds that 0 < bL < 1−G(s̄1) < bF < 1, i.e. the follower is more optimistic about

his rival’s signal than the leader. The thresholds s̄L and s̄F solve

bLE[V (s̄L, sF )|sF > s̄1] + (1− bL)E[V (s̄L, sF )|sF < s̄1] =
c

(η − 1
2
)1
2
(1 + ρ)

(37)

bFE[V (s̄F , sL)|sL > s̄1] + (1− bF )E[V (s̄F , sL)|sL < s̄1] =
c

(η − 1
2
)1
2
(1− ρ)

, (38)

and the leader’s and the follower’s incentives are balanced, i.e. s̄F = s̄L = s̄2, if and only

if

1 =
bFE[V (s̄2, s)|s > s̄1] + (1− bF )E[V (s̄2, s)|s < s̄1]

bLE[V (s̄2, s)|s > s̄1] + (1− bL)E[V (s̄2, s)|s < s̄1]

1− ρ

1 + ρ
(39)

Equation (39) is the equivalent of (16) and it shows that, as stated in Proposition 1,

players’ learning about the first battle’s outcome can induce the follower to exert more

effort than the leader when the contest’s rate of rent dissipation is not to high. Our

analysis in this section thus demonstrates that the fundamental mechanism, responsible

for the beneficial effect of private information on incentives, continues to be present in a

generic setting where players’ information is inconclusive and the contest’s prize can take

arbitrary values.

In addition, the above setup allows us to discuss the effects of intermediate prizes on

players’ learning and incentives. Assume, for this purpose, that, on top of the contest’s

overall prize V , there exists an intermediate prize v > 0 that is awarded to the winner of

the first battle. For simplicity, we continue to assume that players face uncertainty about

V , but we let the size of v be certain and common knowledge. Intuitively, the presence of

an intermediate prize creates an additional incentive for players to exert effort in battle
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1, leading to a reduction in the threshold s̄1. As a consequence, both the leader’s and the

follower’s beliefs, bL and bF , that their rival exerted high effort following a sufficiently high

signal, increase. Notably, the wedge between bL and bF , that arises from the fact that

winning represents bad news whereas losing represents good news about the rival’s signal,

is largest when s̄1 is such that F (s̄1) =
1
2
. In other words, the balancing effect of learning

on incentives is strongest when, in the initial battle, the intermediate prize is such that it

induces each player to face maximum uncertainty with respect to his rival’s effort. While

this insight identifies the potentially beneficial effects on players’ learning as a rational

for the emergence of intermediate prizes, a thorough analysis of the incentive-maximizing

prize allocation across battles is beyond the scope of this paper.

7 Discussion and conclusion

In this article, we have identified the balancing effect of private information on incentives

as an important aspect of dynamic competition. Our modeling approach has kept the

dynamics as simple as possible by limiting the contest to at most three battles. Before we

summarize our main message and its implications, we now discuss potential generalizations

to longer horizons.

In a best-of-three contest, the gap between the leader and the follower can take only

one value. Empirical studies have found that the discouragement effect increases in the

disparity of intermediate outcomes. As a consequence, one would expect the discourage-

ment effect to have a heavier toll on incentives in contests with longer horizons. Given

that, in equilibrium, players will conclude that their rival’s signal is good as soon as they

have been defeated in a single battle, our model maintains its tractability when its horizon

is extended.

Surprisingly, in a best-of-five Tullock contest, the effect of private information on

aggregate incentives turns out to be even more positive than in a best-of-three contest.

More specifically, we have confirmed that, for high and moderate rates of rent dissipation,

the relative gain in incentives due to information being private rather than public, E∗−EP

EP ,

is larger in a best-of-five contest than in a best-of-three contest, independently of the

signals’ informativeness.

We have also analyzed a contest with a potentially infinite horizon where the prize

is awarded if and only if a player has established a two-battle lead. Assuming future

payoffs to be discounted with discount factor δ ∈ (0, 1), and denoting by e∗0 players’

equilibrium efforts when their score is equal and by e∗+1 and e∗−1 players’ efforts when one
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player has taken a one-battle lead, it is straight forward to show that
e∗+1

e∗
−1

=
β∗

+1

β∗

−1

1+R
1−R

and

e∗0 = δh(1)[H(
e∗+1

e∗
−1

)V G − (e∗+1 − e∗−1)]. This means that the main equations of our model,

i.e. (16) and (21), remain largely unchanged which indicates that our results do not arise

from end-of-horizon effects.

We are thus confident to conclude, that, by balancing incentives, learning has a positive

effect on aggregate effort in a dynamic contest. In the presence of private information,

the discouraging effect of falling behind is mitigated by the fact that leaders and fol-

lower update their beliefs in opposite direction following their observation of intermediate

outcomes. As an important consequence, the common concern that dynamics will be

harmful for incentives, may not be justified. In the presence of private information, ag-

gregate incentives in a dynamic contest can be even greater than in the static benchmark.

Our results contrast with the existing literature on dynamic contests that has mostly

abstracted from the potential privacy of information. They shed new light on a vari-

ety of applications, by showing, for example: that lagging firms can be more motivated

to invest in an R&D race than leading firms; that wasteful campaign spending can be

reduced if presidential primaries were held simultaneously rather than sequentially; and

that feedback policies in labor tournaments can have a positive effect not only on workers’

incentives but also on the likelihood of promoting the most able candidate. Although,

admittedly, each one of those applications contains elements that would require our model

to be more adapted, we hope that the simplicity of our approach is helpful to shed light

on the interplay between learning and dynamic incentives that is a common feature of a

broad variety of settings.
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Appendix

Proof of Lemma 1. This proof determines equilibrium effort choices in the public-information
and static-competition benchmarks as well as for a dynamic contest with unobservable
battle outcomes, before considering comparative statics.

Public information benchmark : In the following, we characterize the unique pure-
strategy Subgame Perfect equilibrium of the public information benchmark. We use
(eP1 , e

P
L , e

P
F , e

P
3 ) to denote players’ effort levels conditional on s1 = s2 = G. Our charac-
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terization can restrict attention to first order conditions because our assumption that h
is decreasing guarantees the concavity of players’ objectives. Using backwards induction,
equilibrium in battle 3 can be described in analogy to our single-battle analysis in Sec-
tion 2. As players expect the prize to be V G given by (3) we thus have eP3 = h(1)V G

and a player’s continuation payoff from reaching battle 3 is U3 = [1
2
− h(1)]V G, which

is strictly positive due to Assumption 1 (see footnote 20). In battle 2, the follower’s
valuation of winning is given by U3 whereas the leader’s valuation of winning battle 2 is
V G −U3 = [1

2
+ h(1)]V G > U3. In a Subgame Perfect equilibrium (ePL , e

P
F ) must therefore

solve

ePL ∈ argmax
eL≥0

U3 + (V G − U3)H(
eL

ePF
)− eL (40)

ePF ∈ argmax
eF≥0

U3[1−H(
ePL
eF

)]− eF . (41)

The first order conditions following from (40) and (41) have a unique solution given by

ePF =
1 +R

2
h(

1 +R

1− R
)V G (42)

ePL =
1 +R

1− R
ePF , (43)

with R given by (4). The corresponding continuation payoffs from entering battle 2 as
the leader or the follower are

UG
L = U3 + [H(

1 +R

1−R
)− 1−R

1 +R
h(

1− R

1 +R
)](V G − U3) > U3 (44)

UG
F = [H(

1−R

1 +R
)− 1− R

1 +R
h(

1−R

1 +R
)]U3 > 0, (45)

where the inequalities follow from the fact that H(1+R
1−R

) > H(1−R
1+R

) and because H(y) >
yh(y) for all y > 0 by Assumption 1 (see footnote 20). Finally, in battle 1 players’ have
identical valuations of winning, UG

L − UG
F , and choose their effort to solve

eP1 ∈ argmax
e1≥0

UG
F +H(

e1

eP1
)(UG

L − UG
F )− e1 (46)

leading to

eP1 = (UG
L − UG

F )h(1) = [H(
1 +R

1− R
)− 2h(1)

1− R

1 +R
h(

1−R

1 +R
)]h(1)V G > 0. (47)

The corresponding equilibrium payoff is strictly positive because each player can guarantee
himself a payoff of UG

F > 0 by choosing e1 = 0. Aggregating expected efforts over all three
battles and both players gives

EP = Prob(s1 = s2 = G)[2eP1 + ePL + ePF + 2H(
1− R

1 +R
)eP3 ] (48)

= [R + (1−R)2h(
1−R

1 +R
)] · E[V ].
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Static competition benchmark : Klumpp and Polborn (2006) show that for a Tullock
contest whereH = Hr with r ∈ (0, 1], all equilibria are payoff-equivalent to a pure-strategy
equilibrium in which players choose the same effort in each battle. In the following we
derive a necessary conditions for such an equilibrium for H satisfying Assumption 1.
Suppose that conditional on having received a good signal, players exert effort eS > 0
in each battle. From the viewpoint of a player with a good signal, the contest’s prize
can have non-zero value only when the rival’s signal is good as well, which happens with
probability β1 given by (2). Moreover, in any particular battle, a player’s effort influences
his chance of winning only if there is a draw in the remaining two battles, which, given
symmetry, happens with probability 1

2
. In equilibrium eS must therefore solve

eS ∈ argmax
e≥0

1

2
β1H(

e

eS
)V G − e, (49)

with V G given by (3). Taking the first order condition of (49) and setting e = eS gives
eS = 1

2
β1V

Gh(1) as the unique candidate for a symmetric pure-strategy equilibrium.
Summing efforts over both players and all battles, and multiplying with the probability
that si = G gives 3h(1)E[V ] as the corresponding expected aggregate effort. Note that
the corresponding equilibrium payoff of each player is 1

2
β1V

G[1 − 3h(1)], i.e. existence
of a pure-strategy equilibrium in the static contest requires h(1) < 1

3
. If signals were

observed publicly rather than privately, then, conditional on s1 = s2 = G both players
would exert efforts e = 1

2
V Gh(1) and it follows from the fact that Prob(s1 = s2 = G) =

Prob(si = G)β1 that expected aggregate effort again equals ES.
Unobservable battle outcomes. Consider a variation of our dynamic contest model with

private signals where battle outcomes are unobservable. In the following, we determine
the equilibrium effort levels eU1 , e

U
2 , and eU3 , which players, conditional on having observed

a good signal, choose in battles 1, 2, and 3, respectively. Since battle 3 is reached only
when both players have won exactly one battle, efforts in battle 3 are the same as in the
model with observable battle outcomes, i.e. eU3 = e∗3, given by (6). In battle 2, a player
with a good signal is uncertain whether he has won or lost the first battle. His effort
therefore solves

eU2 ∈ argmax
e2≥0

β1{
1

2
[H(

e2

eU2
)(V G − U3) + U3] +

1

2
H(

e2

eU2
)U3} − e2, (50)

with U3 denoting the continuation payoff from reaching battle 3. Solving this program
leads to the same effort as in the static benchmark, i.e. eU2 = eS. Finally, in battle 1, a
player with a good signal chooses effort to solve

eU1 ∈ argmax
e1≥0

β1{H(
e1

eU1
)UG

L + [1−H(
e1

eU1
)]UG

F }+ (1− β1)U
B
L − e1, (51)

where UG
L = 1

2
V G + 1

2
U3 − eU2 , U

G
F = 1

2
U3 − eU2 , and UB

L = −eU2 , denote the continuation
payoffs of reaching battle 2 as the leader or follower (without knowing it), conditional on
the rival’s signal. Solving this program we again find eU1 = eS. Expected aggregate effort
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is thus given by

EU = 2Prob(si = G)(eU1 + eU2 ) + 2Prob(s1 = s2 = G)
1

2
eU3 = 3h(1)E[V ] = ES. (52)

Hence, with unobservable battle outcomes, expected aggregate effort is the same as in the
static competition benchmark.

Comparative statics : To see that EP < ES use R = 2h(1) to obtain

ES −EP =

[

h(1)− (1− R2)
1− R

1 +R
h(

1−R

1 +R
)

]

E[V ] (53)

and note that h(1) > 1−R
1+R

h(1−R
1+R

) because yh(y) is maximized at y = 1 (Assumption 1).

To see that EP

ES is decreasing in R note that

EP

ES
=

2

3

[

1 +
1−R2

R
· 1−R

1 +R
h(

1− R

1 +R
)

]

, (54)

i.e. EP

ES is the product of two decreasing positive-valued functions (Assumption 1 guaran-
tees that yh(y) increases in y for all y < 1).

Proof of Lemma 2. We first show that, in battle 1, the first order condition corresponding
to the players’ objective function (20) takes the simple form in (21). To see this write the
first order condition as

0 = β1
h(1)

e∗1
[UH

L (e∗1)− UG
F ]− 1 +

d

de1
[H(1)β1U

G
L (e1) + (1− β1)U

B
L (e1)]|e1=e∗

1
. (55)

Substituting continuation values UG
L (e1) and UB

L (e1), the remaining derivative can be
written as

[β1H(1) + 1− β1]
d

de1
{βL(e

∗
1)[U3 +H(

eL(e1)

e∗F
)(V G − U3)]− eL(e1)}|e1=e∗

1
= 0. (56)

The term in parentheses equals the battle 2 objective of a player who deviated in battle
1 by choosing e1 and happened to become the leader. Since eL(e1) is chosen to maximize
this objective, it follows from the envelope theorem that its derivative equals zero. It
follows that e∗1 has to satisfy (21). Together with the analysis contained in Section 3.1,
this shows that (e∗1, e

∗
L, e

∗
F , e

∗
3) defined by (6), (14), (15), and (21), is the unique candidate

for a symmetric pure-strategy Perfect Bayesian equilibrium.
A comment is in order concerning the fact that the maximization program in (20)

restricts the players’ choice to strictly positive effort levels e1 > 0. We now show that a
deviation to e1 = 0 is dominated by a deviation to e1 = ǫ for ǫ > 0 sufficiently small, which
implies that neglecting the possibility of zero effort in (20) comes without loss of generality.
Treating the possibility of zero effort separately is necessary because Bayesian updating
in the case where e1 = 0 differs from Bayesian updating in the case where e1 > 0. More
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precisely, consider an equilibrium with e∗1 > 0, and suppose a player deviates to e1 = 0.
If the deviating player wins the first battle he learns that his rival must have received the
signal B, i.e. β0

L = 0. Instead, if the deviating player loses the first battle, he will update
his belief to β0

F = β1

β1+
1

2
(1−β1)

and then choose an effort e0F ∈ argmaxeF β0
FH( eF

e∗
L

)U3 − eF .

The payoff from a deviation to zero effort in battle 1 is thus given by

U0
1 = β1[H(

e0F
e∗L

)U3 − e0F ]− (1− β1)
1

2
e0F . (57)

Instead, a deviation to e1 = ǫ gives the payoff

U ǫ
1 = β1{H(

ǫ

e∗1
)UG

L (ǫ) + [1−H(
ǫ

e∗1
)]UG

F }+ (1− β1)U
B
L (ǫ)− ǫ. (58)

After winning battle 1, a player who deviated from an equilibrium e∗1 > 0 by exerting only
a small effort in battle 1 must be nearly certain that his rival has observed a bad signal.
Formally, for ǫ → 0 it holds that βL(ǫ) → 0 and thus eL(ǫ) → 0. Hence, for ǫ → 0, it
holds that

U ǫ
1 → β1U

G
F = β1[H(

e∗F
e∗L

)U3 − e∗F ] ≥ U0
1 , (59)

and the inequality follows from the fact that e∗F ∈ argmaxeF H( eF
e∗
L

)U3 − eF . Intuitively,

although a player can achieve that a win in battle 1 reveals the rival’s signal perfectly by
choosing e1 = 0, the player can do even better because when choosing an infinitesimal
effort e1 = ǫ, the rival’s signal becomes revealed not only by a win (approximately) but
also by a loss in battle 1.

Finally, to prove existence of equilibrium it remains to consider second order condi-
tions. We first consider the case where the distribution of the ratio of noise is given by
hr =

ry−r−1

(1+y−r)2
generating the generalized Tullock contest success function with parameter

r. Nti (1999) shows that in a static Tullock contest a pure strategy equilibrium exists
if and only if r ≤ 1 + vr where v ∈ (0, 1] denotes the contestants’ ratio of valuations of
winning. Our contest is dynamic rather than static, but using continuation values we
were able to write each battle in the form of a static Tullock contest. The contestants
have identical valuations of winning in battles 1 and 3, i.e. valuations differ only in battle
2 where v = U3

β∗

L
(V G−U3)

. v is minimized when signals are public, i.e. for β∗
L = 1. Note

that in contrast to Nti (1999), our contest features imperfect information. However, be-
cause contestants exert zero efforts after observing a bad signal, the conditions for a pure
strategy Perfect Bayesian equilibrium are just an analogue of the equilibrium conditions
in Nti (1999). Since for hr we find U3 = (1

2
− r

4
)V G and V G − U3 = (1

2
+ r

4
)V G, a pure

strategy Perfect Bayesian equilibrium thus exists for all σ if and only if

r ≤ 1 + (
2− r

2 + r
)r. (60)

As this inequality is satisfied for all r ≤ 1 we have thus shown existence of equilibrium for
the family of Tullock contest success functions with parameters r ≤ 1. The equilibrium
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is unique and can be determined in closed form as:

e∗3 =
rVG

4
(61)

e∗L =
rVG

4
β∗
L(2 + r)χ (62)

e∗F =
rVG

4
(2− r)χ (63)

e∗1 =
rVG

4
β1χ{(β∗

L

2 + r

2− r
)r + 1− r

4
[β∗

L(2 + r)− 2 + r]} (64)

where we abbreviated notation by defining χ ≡ (β∗

L
)r(2+r)r(2−r)r

[(β∗

L
)r(2+r)r+(2−r)r ]2

.

While for the Tullock family, equilibrium existence is guaranteed for all σ ∈ [0, 1],
that is, independently of the informativeness of the contestants’ signals, for general dis-
tributions of the ratio of noise, existence is harder to establish. In the remainder of this
proof we show that, under the conditions of Assumption 1, an equilibrium exists when the
contest is “sufficiently noisy”, i.e. if h(1) is sufficiently small, or contestants’ information
is “sufficiently public”, that is when σ is sufficiently close to 0 or 1.

To see this, first note that the players’ objective in battle 3, as well as the leader’s and
the follower’s objectives in battle 2, given by (12) and (13), are globally concave because
h = H ′ is assumed to be strictly decreasing. For the remaining battle 1, the second order
condition requires

d

de1
{β1

e∗1
h(

e1

e∗1
)[UG

L (e1)− UG
F ]− 1}|e1=e∗

1
=

β1

e∗1
[
h′(1)

β1h(1)
+ h(1)

dUG
L (e

∗
1)

de1
] < 0 (65)

with

UG
L (e1) = U3 +H(

eL(e1)

e∗F
)(V G − U3)− eL(e1), (66)

eL(e1) ∈ argmax
eL≥0

βL(e1)[U3 + (V G − U3)H(
eL

e∗F
)]− eL. (67)

Note that because h is decreasing the second order condition is automatically satisfied
when h(1) is sufficiently small. To see that the second order condition is also satisfied in
the limits σ → 0 and σ → 1, note that

dUG
L (e

∗
1)

de1
= [h(

e∗L
e∗F

)(V G − U3)− 1]
deL(e

∗
1)

de1
=

1− β∗
L

β∗
L

deL(e
∗
1)

de1
(68)

where we have used the fact that e∗L solves the first order condition β∗
Lh(

e∗
L

e∗
F

)(V G−U3) = 1.

As eL(e1) satisfies an analogue first order condition with β∗
L substituted by βL(e1), we can

employ the Implicit Function Theorem to get

deL(e
∗
1)

de1
= −

h(
e∗L
e∗
F

)e∗F

h′(
e∗
L

e∗
F

)β∗
L

dβL(e
∗
1)

de1
. (69)
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Note from (9) that
dβL(e

∗

1
)

de1
is positive but tends to zero for σ → 0 and for σ → 1. As

β∗
L → 1 in both cases, we can thus conclude from h′ < 0 that the second order condition

in (65) must be satisfied when σ is sufficiently close to 0 or 1.

Proof of Proposition 1. Given that β∗
F = 1,

e∗L
e∗F

=
1 +R

1− R
β∗
L =

1 +R

1− R

1− ω + ω(1− σ)2

1− ω + ω(1− σ)2 + 2ωσ(1− σ)
(70)

and it follows that

lim
σ→0

e∗L
e∗F

= lim
σ→1

e∗L
e∗F

=
ePL
ePF

=
1 +R

1− R
> 1. (71)

Moreover, the derivative

d

dσ
[
e∗L
e∗F

] =
1 +R

1− R

2ω(2σ − 1− ωσ2)

(1− ωσ2)2
(72)

has a unique root in (0, 1) at σ = σ̂(ω) defined in (11), is negative for σ ∈ (0, σ̂(ω)) and

positive for σ ∈ (σ̂(ω), 1). Hence
e∗F
e∗
L

has inverse U-shape with a maximum at σ = σ̂(ω)

and
e∗
F

e∗
L

>
eP
F

eP
L

for all σ ∈ (0, 1). Its maximized value is

e∗F
e∗F

|σ=σ̂(ω) =
1− R

1 +R

1−
√
1− ω√

1− ω − (1− ω)
. (73)

It follows that
e∗F
e∗
L

> 1 for a non-empty interval (σ−, σ+) if and only if

1 +R

1− R

√
1− ω − (1− ω)

1−
√
1− ω

< 1 ⇔ R < R(ω), (74)

with R(ω) as defined in (18). The thresholds σ− and σ+ solve the equation e∗L = e∗F
and are given by (19). That the sum of the leader’s and the follower’s expected effort is
maximized when σ ∈ {σ−, σ+} follows directly from (22) and the fact that the function
yh(y) has a unique maximum at y = 1.

Proof of Lemma 3. Given that in battle 1, a player exerts effort if and only if he observed
a good signal, the expected sum of the two players’ efforts in battle 1 is

E∗
1 = 2Prob(s1 = G)e∗1 = R · E[V ]

[

H(
e∗L
e∗F

)− 1

V G
(e∗L − e∗F )

]

. (75)

As battle 3 is reached only when both players observe a good signal and when the follower
wins the second battle, the expected sum of efforts in battle 3 is given by

E∗
3 = Prob(s1 = s2 = G)

[

1−H(
e∗L
e∗F

)

]

· 2e∗3 = R · E[V ]

[

1−H(
e∗L
e∗F

)

]

. (76)

Aggregating efforts over battles 1 and 3, we are thus left with the simple expression in
(23).
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Proof of Proposition 2. To abbreviate notation, define φ ≡ 1−R
1+R

. Consider

E∗ = E∗
1 + E∗

3 + E∗
2 = RE[V ][1− 1

V G
(e∗L − e∗F )] + E[V ]

e∗L
e∗F

h(
e∗L
e∗F

). (77)

Substitution of e∗F and e∗L from (14) and (15) gives

E∗ = {R +
β∗
L

φ
h(

β∗
L

φ
)[1− β∗

L − φ

1 + φ
R]}E[V ] (78)

which shows that σ affects aggregate incentives only through its effect on β∗
L. In the

following we can thus focus on the dependence of E∗ on β∗
L. First note that limβ∗

L
→1E

∗ =
EP , with EP given by Lemma 1, because

lim
β∗

L
→1

β∗
L

φ
h(

β∗
L

φ
)[1− β∗

L − φ

1 + φ
R] = φh(φ)[1− 1− φ

1 + φ
R] = (1− R)2h(

1− R

1 +R
) (79)

where we have used the fact that by symmetry 1
φ
h( 1

φ
) = φh(φ). Also note that

lim
β∗

L
→φ

β∗
L

φ
h(

β∗
L

φ
)[1− β∗

L − φ

1 + φ
R] = h(1) =

1

2
R (80)

which shows that limβ∗

L
→φ E

∗ = ES, with ES given by Lemma 1. Next, we show that
dE∗

dβ∗

L

< 0 for all β∗
L ≥ φ. For this purpose, we define the function g(y) ≡ yh(y) and

denoting its derivative by g′ we obtain

1

E[V ]

dE∗

dβ∗
L

=
1

φ
g′(

β∗
L

φ
)[1− β∗

L − φ

1 + φ
R]− 1

1 + φ
g(
β∗
L

φ
)R (81)

which is strictly negative for all β∗
L ≥ φ because g(.) is unimodal with a maximum at 1.

Next, we argue that E∗ > EP for all β∗
L ∈ [φ2, φ). To see this use (77) to obtain

E∗ −EP = RE[V ]
1

V G
(ePL − ePF + e∗F − e∗L) + E[V ][

e∗L
e∗F

h(
e∗L
e∗F

)− ePL
ePF

h(
ePL
ePF

)] > 0. (82)

Here the first term is positive because ePL > ePF and β∗
L < φ implies that e∗F > e∗L while

the second term is positive because from β∗
L ≥ φ2 it follows that 1 >

e∗
L

e∗
F

≥ eP
F

eP
L

which given

g’s unique mode at one implies that

0 <
e∗L
e∗F

h(
e∗L
e∗F

)− ePF
ePL

h(
ePF
ePL

) =
e∗L
e∗F

h(
e∗L
e∗F

)− ePL
ePF

h(
ePL
ePF

). (83)

Finally, note from

E∗ −EP = E[V ]{β
∗
L

φ
h(

β∗
L

φ
)[1− β∗

L − φ

1 + φ
R]− (1−R)2h(φ)} (84)
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that for β∗
L → 0, the difference E∗ −EP converges to −E[V ](1− R)2h(φ) < 0.

The Proposition then follows from the fact that β∗
L(σ) is U-shaped with limσ→0 β

∗
L =

limσ→1 β
∗
L = 1 and that its minimum value minσ∈(0,1) β

∗
L =

√
1−ω−(1−ω)

1−
√
1−ω

is smaller than φ if

and only if R < R(ω) and smaller than φ2 if and only if R < R(ω) with both thresholds
converging to one for ω → 1 and to zero for ω → 0.

Proof of Proposition 3. For R ≥ R(ω), E∗(σ) inherits its shape from β∗
L(σ), because, as

shown in the proof of Proposition 2, dE∗

dβ∗

L

< 0 for β∗
L ≥ φ = 1−R

1+R
⇔ e∗

L

e∗
F

> 1 and because

the follower cannot be induced to exert higher effort than the leader, independently of
σ. For R < R(ω), the proof of Proposition 2 has shown that E∗(σ) must be maximized
at a σ∗ ∈ (σ−, σ+) and since the thresholds σ− and σ+ are defined by the requirement
that e∗L = e∗F , at σ = σ∗ it must hold that e∗F > e∗L. It thus remains to consider the
comparative statics:

dR

dω
=

2− ω − 2
√
1− ω

ω2
√
1− ω

> 0 (85)

because the nominator is increasing in ω for ω ∈ (0, 1) and converges to zero for ω → 0.
For the same reason it holds that

dσ̂

dω
=

2− ω − 2
√
1− ω

2ω2
√
1− ω

> 0. (86)

Proof of Proposition 4. Consider − ∂S
∂β∗

L

|β∗

L
=1 = ∆S+ −∆S− with ∆S+ and ∆S− given by

(33) and (34), respectively. Note first that γ > 1 implies that H(γ) > H( 1
γ
). Remember

that the function yh(y) is unimodal with a unique maximum at y = 1 and that yh(y) =
1
y
h( 1

y
). As

V G − U l
3

Uh
3

= γ
H( 1

γ
) + γh(γ)

H( 1
γ
)− γh(γ)

> 1 (87)

it holds that γ
V G−U l

3

Uh
3

> 1 and it is thus sufficient for ∆S+ > ∆S− that

[γ
V G − U l

3

Uh
3

]−1 < γ
U l
3

V G − Uh
3

< γ
V G − U l

3

Uh
3

. (88)

The second inequality follows directly from

U l
3

V G − Uh
3

=
H(γ)− γh(γ)

H(γ) + γh(γ)
< 1. (89)

For the first inequality note that
U l
3

V G−Uh
3

>
Uh
3

V G−U l
3

if and only if

H(γ)− γh(γ)− [H(γ)− γh(γ)]2 > H(
1

γ
)− γh(γ)− [H(

1

γ
)− γh(γ)]2. (90)
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This inequality is satisfied because the terms H(γ)−γh(γ) and H( 1
γ
)−γh(γ) lie between

zero and one and the former is closer to 1
2
than the latter. We have thus shown that

∆S+ > ∆S−, or equivalently, ∂S
∂β∗

L

|β∗

L
=1 < 0. Using private information to reduce the

leader’s belief marginally below his belief in the public information benchmark has a
positive effect on selective efficiency.
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